prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean( -tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # loss train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) #GiveAnswer(mnist.test.images[3]) #print("ans:",list(mnist.test.labels[3]).index(1)) from MKPicSet import PicSet as PS MP = PS() MP.AddDir('./TraingData/') a = 0 i = 0 while a < cf.SuccessRate and i < cf.MAX_Training: batch_xs, batch_ys = MP.batch(cf.batch) sess.run(train_step, feed_dict={ xs: batch_xs, ys: batch_ys, keep_prob: 0.5 }) if i % 10 == 0: MP.reset() test_xs, test_ys = MP.batch(cf.batch)
predictions, name="my_metric") running_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="my_metric") running_vars_initializer = tf.variables_initializer(var_list=running_vars) # Initializing the variables init = tf.initialize_all_variables() running_vars_initializer = tf.variables_initializer(var_list=running_vars) ############################################################# #sess = tf.Session() #sess.run(tf.global_variables_initializer()) from MKPicSet import PicSet as PS MP = PS() MP.Addtest('./TraingData10/') #MP.show() NumberOfOneTraing = 1253 #每單次訓練的使用的圖象數量 from test import PicSet as TPS TMP = TPS() #print(1) TMP.Addtest('./TraingData10/') #print(2) #MP.show() TNumberOfOneTraing = 1303 ########################################################### #print(3) with tf.Session() as sess:
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean( -tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # loss train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session() sess.run(tf.global_variables_initializer()) #GiveAnswer(mnist.test.images[3]) #print("ans:",list(mnist.test.labels[3]).index(1)) from MKPicSet import PicSet as PS MP = PS() MP.AddDir('./TraingData/') NumberOfOneTraing = 100 #每單次訓練的使用的圖象數量 for i in range(101): #訓練次數 batch_xs, batch_ys = MP.batch(NumberOfOneTraing) sess.run(train_step, feed_dict={ xs: batch_xs, ys: batch_ys, keep_prob: 0.5 }) if i % 10 == 0: test_xs, test_ys = MP.batch(100) #print(test_xs[0],test_ys[0]) print(str(i * NumberOfOneTraing), ",",