Example #1
0
def local_process(local_input_list, thread, q):
    filesNames = local_input_list[0]
    dataPath = local_input_list[1]
    AIType = local_input_list[2]
    localMaMain = MlMain()
    localDataCollector = MlDataCollector()
    bsm_list = []
    for i in tqdm(range(0, int(len(filesNames) * 1.0))):
        s = filesNames[i]
        if s.endswith(".bsm"):
            bsmJsonString = open(dataPath + '/' + s, 'r').read()
            bsmJsom = json.loads(bsmJsonString)
            bsm_list.append(bsmJsom)
        if s.endswith(".lbsm"):
            bsmJsonString = open(dataPath + '/' + s, 'r').read()
            listBsmJsom = json.loads(bsmJsonString)
            for bsmJsom in listBsmJsom:
                bsm_list.append(bsmJsom)

    #print(bsm_list[0]['BsmPrint']['Metadata']['generationTime'])
    #print(bsm_list[-1]['BsmPrint']['Metadata']['generationTime'])
    bsm_list.sort(key=localMaMain.extract_time, reverse=True)
    #print(bsm_list[0]['BsmPrint']['Metadata']['generationTime'])
    #print(bsm_list[-1]['BsmPrint']['Metadata']['generationTime'])

    for i in tqdm(range(len(bsm_list) - 1, -1, -1)):
        curArray = localMaMain.getNodeArray(bsm_list[i], AIType)
        localDataCollector.collectData(curArray)
        del bsm_list[i]

    if thread:
        q[1] = [localDataCollector]
    else:
        return localDataCollector
Example #2
0
class MlMain:
    initiated = False

    curDateStr = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    DataCollector = MlDataCollector()
    Trainer = MlTrainer()
    Storage = MlArrayStorage()
    arrayLength = 5

    collectDur = 0
    deltaCall = 1000

    clf = None
    savePath = './saveFile/saveFile_Mix'
    #dataPath = '/media/sca-team/ef5ca73c-c8ef-4e03-a88c-a54bcbb15b0e/DataF2MD/Test'
    dataPath = '/media/sca-team/DATA/DataF2MD/IRT-BSMS-MIX-V1/MDBsms_2018-11-6_19:19:15'

    #dataPath = '/media/sca-team/ef5ca73c-c8ef-4e03-a88c-a54bcbb15b0e/DataF2MD/IRT-BSMS-MIX-V2/MDBsms_2018-11-5_15:22:52'

    def init(self, version, AIType):

        self.savePath = self.savePath + '_' + str(version)

        self.DataCollector.setCurDateSrt(self.curDateStr)
        self.DataCollector.setSavePath(self.savePath)
        self.Trainer.setCurDateSrt(self.curDateStr)
        self.Trainer.setSavePath(self.savePath)
        self.Trainer.setAIType(AIType)

        self.trainedModelExists(AIType)
        if RTreadDataFromFile:
            self.ReadDataFromFile(AIType)

    def mlMain(self):
        version = "V1"
        AIType = "neural_network"
        if not self.initiated:
            self.init(version, AIType)
            self.initiated = True
        return False

    def trainedModelExists(self, AIType):
        #filesNames = [f.name  for f in scandir(self.savePath) if isfile(join(self.savePath, f.name))]
        filesNames = [
            f for f in tqdm(os.listdir(self.savePath))
            if os.path.isfile(join(self.savePath, f))
        ]

        print("trainedModelExists?")
        for s in filesNames:
            if s.startswith('clf_' + AIType) and s.endswith(".pkl"):
                self.curDateStr = s[-23:-4]

                print("Loading " + AIType + " " + self.curDateStr + " ...")
                self.clf = joblib.load(self.savePath + '/' + s)
                self.DataCollector.setCurDateSrt(self.curDateStr)
                self.Trainer.setCurDateSrt(self.curDateStr)
                self.DataCollector.loadData()
                self.Trainer.setValuesCollection(
                    self.DataCollector.getValuesCollection())
                self.Trainer.setTargetCollection(
                    self.DataCollector.getTargetCollection())

                self.deltaCall = self.DataCollector.valuesCollection.shape[
                    0] / 5
                print("Loading " +
                      str(self.DataCollector.valuesCollection.shape) +
                      " Finished!")

    def ReadDataFromFile(self, AIType):
        print("DataSave And Training " + str(self.dataPath) + " Started ...")

        #filesNames = [f.name for f in tqdm(scandir(self.dataPath)) if f.is_file()]
        filesNames = [
            f for f in tqdm(os.listdir(self.dataPath))
            if os.path.isfile(join(self.dataPath, f))
        ]
        print("bsmDataExists?")

        ValuesData = []
        TargetData = []

        for i in tqdm(range(0, len(filesNames))):
            s = filesNames[i]
            if s.endswith(".bsm"):
                bsmJsonString = open(self.dataPath + '/' + s, 'r').read()
                bsmJsom = json.loads(bsmJsonString)
                curArray = self.getNodeArray(bsmJsom)
                ValuesData.append(curArray[0])
                TargetData.append(curArray[1])

        self.DataCollector.initValuesData(ValuesData)
        self.DataCollector.initTargetData(TargetData)

        self.DataCollector.saveData()
        self.Trainer.setValuesCollection(
            self.DataCollector.getValuesCollection())
        self.Trainer.setTargetCollection(
            self.DataCollector.getTargetCollection())
        self.Trainer.train()
        self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                               self.curDateStr + '.pkl')
        self.deltaCall = self.DataCollector.valuesCollection.shape[0] / 5
        print("DataSave And Training " + str(self.dataPath) + " Finished!")

    def getNodeArray(self, bsmJsom):
        cur_array = self.getArray(bsmJsom)
        pseudonym = bsmJsom['BsmPrint']['BSMs'][0]['pseudonym']
        time = bsmJsom['BsmPrint']['Metadata']['generationTime']
        self.Storage.add_array(pseudonym, time, cur_array)
        returnArray = self.Storage.get_array(pseudonym, self.arrayLength)

        #print "cur_array: " + str(cur_array)
        #print "returnArray: " + str(returnArray)
        return returnArray

    def getArray(self, bsmJsom):
        rP = bsmJsom['BsmPrint']['BsmCheck']['rP']
        pP = bsmJsom['BsmPrint']['BsmCheck']['pP']
        sP = bsmJsom['BsmPrint']['BsmCheck']['sP']
        pC = bsmJsom['BsmPrint']['BsmCheck']['pC']
        sC = bsmJsom['BsmPrint']['BsmCheck']['sC']
        psC = bsmJsom['BsmPrint']['BsmCheck']['psC']
        phC = bsmJsom['BsmPrint']['BsmCheck']['phC']
        sA = bsmJsom['BsmPrint']['BsmCheck']['sA']
        #sA = 1
        bF = bsmJsom['BsmPrint']['BsmCheck']['bF']
        inT = 1
        for x in bsmJsom['BsmPrint']['BsmCheck']['inT']:
            if inT > x['uVal']:
                inT = x['uVal']

        time = bsmJsom['BsmPrint']['Metadata']['generationTime']
        label = bsmJsom['BsmPrint']['Metadata']['mbType']

        #label = 0
        if (label == 'Genuine'):
            numLabel = 0.0
        else:
            numLabel = 1.0

        valuesArray = array([rP, pP, sP, pC, sC, psC, phC, sA, bF, inT])
        targetArray = array([numLabel])
        returnArray = array([valuesArray, targetArray])

        #print "returnArray: " + str(returnArray)
        #returnArray = returnArray.astype(np.float)
        return returnArray
Example #3
0
class MlMain:
    initiated = False

    curDateStr = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    DataCollector = MlDataCollector()
    Trainer = MlTrainer()
    Storage = MlArrayStorage()
    arrayLength = 20

    collectDur = 0
    deltaCall = 1000

    clf = None
    savePath = './saveFile/saveFile_Mix_D20'
    dataPath = './MDBsms_Mix'

    def init(self, version, AIType):
        self.savePath = self.savePath + '_' + str(version)

        self.DataCollector.setCurDateSrt(self.curDateStr)
        self.DataCollector.setSavePath(self.savePath)
        self.Trainer.setCurDateSrt(self.curDateStr)
        self.Trainer.setSavePath(self.savePath)
        self.Trainer.setAIType(AIType)

        self.trainedModelExists(AIType)
        if RTreadDataFromFile:
            self.ReadDataFromFile(version, AIType)

    def mlMain(self, version, bsmJsonString, AIType):
        if not self.initiated:
            self.init(version, AIType)
            self.initiated = True

        bsmJsom = json.loads(bsmJsonString)
        curArray = self.getNodeArray(bsmJsom)

        if RTcollectData:
            if self.collectDur < self.deltaCall:
                self.collectDur = self.collectDur + 1
                self.DataCollector.collectData(curArray)
            else:
                print "DataSave And Training " + str(
                    self.deltaCall) + " Started ..."
                self.collectDur = 0
                self.DataCollector.saveData()

                if RTtrain:
                    self.Trainer.setValuesCollection(
                        self.DataCollector.getValuesCollection())
                    self.Trainer.setTargetCollection(
                        self.DataCollector.getTargetCollection())
                    print self.Trainer.valuesCollection.shape
                    self.Trainer.train()
                    self.clf = joblib.load(self.savePath + '/clf_' + AIType +
                                           '_' + self.curDateStr + '.pkl')
                    self.deltaCall = self.DataCollector.valuesCollection.shape[
                        0] / 5
                print "DataSave And Training " + str(
                    self.deltaCall) + " Finished!"

        if self.clf is None:
            return False
        else:
            if RTpredict:
                prediction = self.clf.predict(array([curArray[0]]))
                #print "========================================"
                if prediction[0] == 0.0:
                    return False
                else:
                    return True
            #print prediction
            #print curArray[1]
            #print "========================================"

        return False

    def trainedModelExists(self, AIType):
        filesNames = [
            f for f in listdir(self.savePath) if isfile(join(self.savePath, f))
        ]
        print "trainedModelExists?"

        for s in filesNames:
            if s.startswith('clf_' + AIType) and s.endswith(".pkl"):
                self.curDateStr = s[-23:-4]

                print "Loading " + AIType + " " + self.curDateStr + " ..."
                self.clf = joblib.load(self.savePath + '/' + s)
                self.DataCollector.setCurDateSrt(self.curDateStr)
                self.Trainer.setCurDateSrt(self.curDateStr)
                self.DataCollector.loadData()
                self.Trainer.setValuesCollection(
                    self.DataCollector.getValuesCollection())
                self.Trainer.setTargetCollection(
                    self.DataCollector.getTargetCollection())

                #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
                print "Loading " + str(
                    self.DataCollector.valuesCollection.shape) + " Finished!"

    def ReadDataFromFile(self, version, AIType):
        print "DataSave And Training " + str(self.dataPath + '_' +
                                             version) + " Started ..."
        filesNames = [
            f for f in tqdm(listdir(self.dataPath + '_' + version))
            if isfile(join(self.dataPath + '_' + version, f))
        ]
        print "bsmDataExists?"

        ValuesData = []
        TargetData = []

        for i in tqdm(range(0, len(filesNames))):
            s = filesNames[i]
            if s.endswith(".bsm"):
                bsmJsonString = open(self.dataPath + '_' + version + '/' + s,
                                     'r').read()
                bsmJsom = json.loads(bsmJsonString)
                curArray = self.getNodeArray(bsmJsom)
                self.DataCollector.collectData(curArray)

        self.DataCollector.saveData()
        self.Trainer.setValuesCollection(
            self.DataCollector.getValuesCollection())
        self.Trainer.setTargetCollection(
            self.DataCollector.getTargetCollection())
        self.Trainer.train()
        self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                               self.curDateStr + '.pkl')
        #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
        print "DataSave And Training " + str(self.dataPath + '_' +
                                             version) + " Finished!"

    def getNodeArray(self, bsmJsom):
        cur_array = self.getArray(bsmJsom)
        pseudonym = bsmJsom['BsmPrint']['BSMs'][0]['pseudonym']
        time = bsmJsom['BsmPrint']['Metadata']['generationTime']
        self.Storage.add_array(pseudonym, time, cur_array)
        returnArray = self.Storage.get_array(pseudonym, self.arrayLength)

        #print "cur_array: " + str(cur_array)
        #print "returnArray: " + str(returnArray)
        return returnArray

    def getArray(self, bsmJsom):
        rP = bsmJsom['BsmPrint']['BsmCheck']['rP']
        pP = bsmJsom['BsmPrint']['BsmCheck']['pP']
        sP = bsmJsom['BsmPrint']['BsmCheck']['sP']
        pC = bsmJsom['BsmPrint']['BsmCheck']['pC']
        sC = bsmJsom['BsmPrint']['BsmCheck']['sC']
        psC = bsmJsom['BsmPrint']['BsmCheck']['psC']
        phC = bsmJsom['BsmPrint']['BsmCheck']['phC']
        sA = bsmJsom['BsmPrint']['BsmCheck']['sA']
        #sA = 1
        bF = bsmJsom['BsmPrint']['BsmCheck']['bF']
        inT = 1
        for x in bsmJsom['BsmPrint']['BsmCheck']['inT']:
            if inT > x['uVal']:
                inT = x['uVal']

        time = bsmJsom['BsmPrint']['Metadata']['generationTime']
        label = bsmJsom['BsmPrint']['Metadata']['mbType']

        #label = 0
        if (label == 'Genuine'):
            numLabel = 0.0
        else:
            numLabel = 1.0

        #valuesArray = array([rP,pP,sP,pC,sC,psC,phC,sA,bF,inT])
        valuesArray = array([
            1 - rP, 1 - pP, 1 - sP, 1 - pC, 1 - sC, 1 - psC, 1 - phC, 1 - sA,
            1 - bF, 1 - inT, 1
        ])
        targetArray = array([numLabel])
        returnArray = array([valuesArray, targetArray])

        #print "returnArray: " + str(returnArray)
        #returnArray = returnArray.astype(np.float)
        return returnArray
Example #4
0
class MlMain:
	initiated = False

	curDateStr = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
	DataCollector = MlDataCollector()
	Trainer = MlTrainer()
	Storage = MlNodeStorage()
	arrayLength = 40

	collectDur = 0
	deltaCall = 1000

	clf = None

	savePath = './saveFile/saveFile_D40'
	dataPath = '/home/sca-team/Projects/F2MD/mdmSave/IRT-BSMs-Reports-V2/MDBsmsList_2018-11-29_18:18:23'

	def init(self, version, AIType):

		self.savePath = self.savePath +'_'+ str(version)

		self.DataCollector.setCurDateSrt(self.curDateStr)
		self.DataCollector.setSavePath(self.savePath)
		self.Trainer.setCurDateSrt(self.curDateStr)
		self.Trainer.setSavePath(self.savePath)
		self.Trainer.setAIType(AIType)

		self.trainedModelExists(AIType)
		if RTreadDataFromFile:
			self.ReadDataFromFile(AIType)
		if RTtrainData:
			self.TrainData(AIType)

	def mlMain(self):
		version = "V2"
		AIType = "MLP_L3N25"

		if not self.initiated:
			self.init(version,AIType)
			self.initiated = True
		return False


	def trainedModelExists(self, AIType):
		#filesNames = [f.name  for f in scandir(self.savePath) if isfile(join(self.savePath, f.name))]
		filesNames = [f for f in tqdm(os.listdir(self.savePath)) if os.path.isfile(join(self.savePath, f))]

		print ("trainedModelExists?")
		for s in filesNames:
			if s.startswith('clf_'+AIType) and s.endswith(".pkl"):
				self.curDateStr = s[-23:-4]

				print ("Loading " +AIType + " "+ self.curDateStr+ " ...")
				self.clf = joblib.load(self.savePath+'/'+s)
				self.DataCollector.setCurDateSrt(self.curDateStr)
				self.Trainer.setCurDateSrt(self.curDateStr)
				self.DataCollector.loadData()
				self.Trainer.setValuesCollection(self.DataCollector.getValuesCollection())
				self.Trainer.setTargetCollection(self.DataCollector.getTargetCollection())
 
				self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
				print ("Loading " + str(self.DataCollector.valuesCollection.shape) +  " Finished!")

	def ReadDataFromFile(self, AIType):
		print ("DataLoad " + str(self.dataPath) + " Started ...")

		#filesNames = [f.name for f in tqdm(scandir(self.dataPath)) if f.is_file()]
		filesNames = [f for f in tqdm(os.listdir(self.dataPath)) if os.path.isfile(join(self.dataPath, f))]
		print ("bsmDataExists?")

		ValuesData = []
		TargetData = []
		
		for i in tqdm(range(0,len(filesNames))):
		#for i in tqdm(range(0,3000)):
			s = filesNames[i]
			if s.endswith(".bsm"):
				bsmJsonString = open(self.dataPath+'/' +s, 'r').read()
				bsmJsom = json.loads(bsmJsonString)
				curArray = self.getNodeArray(bsmJsom,AIType)
				self.DataCollector.collectData(curArray)
			if s.endswith(".lbsm"):
				bsmJsonString = open(self.dataPath+'/' +s, 'r').read()
				bsmJsom = json.loads(bsmJsonString)
				for bsmItem in bsmJsom:
					curArray = self.getNodeArray(bsmItem,AIType)
					self.DataCollector.collectData(curArray)

		self.DataCollector.saveData()
		print ("DataLoad " + str(self.dataPath) + " Finished!")

	def TrainData(self, AIType):
		print ("Training " + str(self.dataPath) + " Started ...")
		self.Trainer.setValuesCollection(self.DataCollector.getValuesCollection())
		self.Trainer.setTargetCollection(self.DataCollector.getTargetCollection())
		self.Trainer.train()
		self.clf = joblib.load(self.savePath+'/clf_'+AIType+'_'+self.curDateStr+'.pkl')
		self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
		print ("Training " + str(self.dataPath) + " Finished!")


	def getNodeArray(self,bsmJsom,AIType):
		receiverId = bsmJsom['BsmPrint']['Metadata']['receiverId']
		pseudonym = bsmJsom['BsmPrint']['BSMs'][0]['pseudonym'] 
		time = bsmJsom['BsmPrint']['Metadata']['generationTime']
		self.Storage.add_bsm(receiverId,pseudonym, time, bsmJsom)
		if(AIType == 'SVM'):
			returnArray = self.Storage.get_array(receiverId,pseudonym, self.arrayLength)
		if(AIType == 'MLP_L1N15'):
			returnArray = self.Storage.get_array_MLP_L1N15(receiverId,pseudonym, self.arrayLength)
		if(AIType == 'MLP_L3N25'):
			returnArray = self.Storage.get_array_MLP_L3N25(receiverId,pseudonym, self.arrayLength)
		if(AIType == 'LSTM'):
			returnArray = self.Storage.get_array_lstm(receiverId,pseudonym, self.arrayLength)

		#print "cur_array: " + str(cur_array)
		#print "returnArray: " + str(returnArray)
		return returnArray
Example #5
0
class MlMain:
    initiated = False

    curDateStr = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    DataCollector = MlDataCollector()
    Trainer = MlTrainer()
    Storage = MlNodeStorage()
    arrayLength = 60

    collectDur = 0
    deltaCall = 100000

    clf = None
    savePath = './saveFile/saveFile_D60'
    dataPath = './MDBsmsList_V2_2019-8-27_17:35:33'
    RTTrainDataFromFile = False

    meanRuntime = 0
    meanRuntime_p = 0
    numRuntime = 0
    printRuntime = 10000 * 10000
    printRuntimeCnt = 0

    filterdelta = 0

    labels_legacy = [
        "Genuine",
        "LocalAttacker",
    ]

    labels_attacks = [
        "Genuine",
        "ConstPos",
        "ConstPosOffset",
        "RandomPos",
        "RandomPosOffset",
        "ConstSpeed",
        "ConstSpeedOffset",
        "RandomSpeed",
        "RandomSpeedOffset",
        "EventualStop",
        "Disruptive",
        "DataReplay",
        "StaleMessages",
        "DoS",
        "DoSRandom",
        "DoSDisruptive",
        "GridSybil",
        "DataReplaySybil",
        "DoSRandomSybil",
        "DoSDisruptiveSybil",
    ]

    version_added = False

    le = MlLabelEncoder()

    stats = MlStats()
    varthrelite = MlVarThresholdLite()

    RTmultipredict = False
    multi_predict_num = 524288
    multi_predict_count = 0
    multi_predict_array = []
    multi_predict_array_combined = {}
    multi_predict_label = []
    multi_predict_label_combined = {}

    def init(self, version, AIType):
        if RTDetectAttackTypes:
            self.le.fit(self.labels_attacks)
        else:
            self.le.fit(self.labels_legacy)
        if not self.version_added:
            if RTDetectAttackTypes:
                self.savePath = self.savePath + '_Attacks_' + str(version)
            else:
                self.savePath = self.savePath + '_Legacy_' + str(version)
            self.version_added = True

        self.DataCollector.setCurDateSrt(self.curDateStr)
        self.DataCollector.setSavePath(self.savePath)
        self.Trainer.setCurDateSrt(self.curDateStr)
        self.Trainer.setSavePath(self.savePath)
        self.Trainer.setAIType(AIType)

        self.trainedModelExists(AIType)
        if self.RTTrainDataFromFile:
            if RTaddexistingweights:
                self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                                       self.curDateStr + '.pkl')
            self.ReadDataFromFile(AIType)
            #self.TrainData(AIType)
            os._exit(0)

    def mlMain(self, version, bsmJsonString, AIType):

        if not self.initiated:
            self.init(version, AIType)
            self.initiated = True

        start_time = time.time()

        bsmJsom = json.loads(bsmJsonString)
        curArray = self.getNodeArray(bsmJsom, AIType)

        if RTcollectData:
            if self.collectDur < self.deltaCall:
                self.collectDur = self.collectDur + 1
                self.DataCollector.collectData(curArray)
            else:
                print("DataSave And Training " + str(self.deltaCall) +
                      " Started ...")
                self.collectDur = 0
                self.DataCollector.saveData()

                if RTtrain:
                    print(len(self.Trainer.dataCollector.ValuesData))
                    self.Trainer.train(self.DataCollector, self.le)
                    self.clf = joblib.load(self.savePath + '/clf_' + AIType +
                                           '_' + self.curDateStr + '.pkl')
                    self.deltaCall = len(
                        self.Trainer.dataCollector.ValuesData) / 2
                    #self.deltaCall = 10000000
                print("DataSave And Training " + str(self.deltaCall) +
                      " Finished!")

        return_value = "False"
        #return return_value

        if self.clf is None:
            return_value = "False"
            start_time_p = 0.0
            end_time_p = 0.0
        else:
            #self.clf.save(self.savePath + "/model.h5")
            #self.clf.save_weights(self.savePath + "/model_weights.h5")
            #os._exit(0)
            if RTpredict:
                if ('LSTM' in AIType):
                    self.clf.reset_states()
                if self.RTmultipredict:
                    start_time_p = 0.0
                    end_time_p = 0.0
                    if 'COMBINED' in AIType:
                        cur_shape_0 = curArray[0][0].shape[0]
                        if cur_shape_0 in self.multi_predict_array_combined.keys(
                        ):
                            self.multi_predict_array_combined[
                                cur_shape_0].append(
                                    [curArray[0][0], curArray[0][1]])
                            self.multi_predict_label_combined[
                                cur_shape_0].append(
                                    self.le.transform([
                                        bsmJsom['BsmPrint']['Metadata']
                                        ['mbType']
                                    ])[0])
                        else:
                            self.multi_predict_array_combined[cur_shape_0] = []
                            self.multi_predict_label_combined[cur_shape_0] = []
                            self.multi_predict_array_combined[
                                cur_shape_0].append(
                                    [curArray[0][0], curArray[0][1]])
                            self.multi_predict_label_combined[
                                cur_shape_0].append(
                                    self.le.transform([
                                        bsmJsom['BsmPrint']['Metadata']
                                        ['mbType']
                                    ])[0])
                    else:
                        self.multi_predict_array.append(curArray[0])
                        self.multi_predict_label.append(
                            self.le.transform([
                                bsmJsom['BsmPrint']['Metadata']['mbType']
                            ])[0])

                    if self.multi_predict_count > self.multi_predict_num:
                        pred_array_list = []
                        if 'COMBINED' in AIType:
                            for cur_shape_0 in self.multi_predict_array_combined.keys(
                            ):
                                multi_predict_array = self.multi_predict_array_combined[
                                    cur_shape_0]
                                lstm_arrays = np.array(
                                    [xi[0] for xi in multi_predict_array])
                                mlp_arrays = np.array(
                                    [xi[1] for xi in multi_predict_array])
                                #lstm_arrays = np.squeeze(lstm_arrays)
                                #mlp_arrays = np.squeeze(mlp_arrays)
                                pred_array_list.append(
                                    self.clf.predict([lstm_arrays,
                                                      mlp_arrays]))
                                self.multi_predict_label.append(
                                    self.
                                    multi_predict_label_combined[cur_shape_0])
                        else:
                            pred_array_list.append(
                                self.clf.predict(
                                    array(self.multi_predict_array)))
                            self.multi_predict_label = [
                                self.multi_predict_label
                            ]

                        for pred_array_index in range(0, len(pred_array_list)):
                            pred_array = pred_array_list[pred_array_index]
                            for index in range(0, len(pred_array)):
                                if 'XGBoost' in AIType or 'SVM' in AIType or 'LogisticRegression' in AIType:
                                    prediction = pred_array[index]
                                else:
                                    prediction = pred_array[index][
                                        1 - self.le.transform(['Genuine'])[0]]
                                self.varthrelite.update_stats(
                                    prediction,
                                    self.multi_predict_label[pred_array_index]
                                    [index])
                                if prediction > Positive_Threshold:
                                    #self.stats.update_stats(True,self.multi_predict_label[index])
                                    return_value = "True"
                                else:
                                    #self.stats.update_stats(False,self.multi_predict_label[index])
                                    return_value = "False"
                        del self.multi_predict_array[:]
                        del self.multi_predict_label[:]
                        self.multi_predict_array_combined.clear()
                        self.multi_predict_label_combined.clear()
                        self.multi_predict_count = 0
                    else:
                        self.multi_predict_count = self.multi_predict_count + 1

                else:
                    if 'COMBINED' in AIType:
                        array_npy = [
                            np.array([curArray[0][0]]),
                            np.array([curArray[0][1]])
                        ]
                    else:
                        array_npy = np.array([curArray[0]])
                    start_time_p = time.time()
                    pred_array = self.clf.predict(array_npy)
                    end_time_p = time.time()
                    gen_index = self.le.transform(['Genuine'])[0]
                    if 'XGBoost' in AIType or 'SVM' in AIType or 'LogisticRegression' in AIType:
                        prediction = pred_array[0]
                    else:
                        prediction = pred_array[0][1 - gen_index]

                    label_index = self.le.transform(
                        [bsmJsom['BsmPrint']['Metadata']['mbType']])[0]
                    self.varthrelite.update_stats(prediction, label_index)
                    if prediction > Positive_Threshold:
                        self.stats.update_stats(True, label_index)
                        return_value = "True"
                    else:
                        self.stats.update_stats(False, label_index)
                        return_value = "False"
            #print prediction
            #print curArray[1]
            #print "========================================"

        end_time = time.time()
        self.meanRuntime = (self.numRuntime * self.meanRuntime +
                            (end_time - start_time)) / (self.numRuntime + 1)
        self.meanRuntime_p = (self.numRuntime * self.meanRuntime_p +
                              (end_time_p - start_time_p)) / (self.numRuntime +
                                                              1)
        if self.printRuntimeCnt >= self.printRuntime:
            self.printRuntimeCnt = 0
            print('meanRuntime: ' + str(self.meanRuntime) + ' ' +
                  str(self.numRuntime) + ' predict:' + str(self.meanRuntime_p))
            self.stats.print_stats()
            self.varthrelite.print_stats()
            self.printRuntimeCnt = self.printRuntimeCnt + 1
        else:
            self.printRuntimeCnt = self.printRuntimeCnt + 1
        self.numRuntime = self.numRuntime + 1

        return return_value

    def trainedModelExists(self, AIType):
        filesNames = [
            f for f in listdir(self.savePath) if isfile(join(self.savePath, f))
        ]
        print("trainedModelExists?")

        for s in filesNames:
            if s.startswith('clf_' + AIType) and s.endswith(".pkl"):

                print("Loading " + s + " " + AIType + " " + self.curDateStr +
                      " ...")
                self.clf = joblib.load(self.savePath + '/' + s)
                if RTcollectData:
                    self.curDateStr = s[-23:-4]
                    self.DataCollector.setCurDateSrt(self.curDateStr)
                    self.Trainer.setCurDateSrt(self.curDateStr)
                    self.DataCollector.loadData()
                else:
                    self.DataCollector.setCurDateSrt(self.curDateStr)
                    self.Trainer.setCurDateSrt(self.curDateStr)
                #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
                print("Loading " + str(len(self.DataCollector.ValuesData)) +
                      " Finished!")

    def ReadDataFromFile(self, AIType):
        print("DataSave And Training " + str(self.dataPath) + " Started ...")
        print("bsmDataExists?")

        filesNames = [
            f for f in tqdm(listdir(self.dataPath))
            if isfile(join(self.dataPath, f))
        ]
        numberOfIters = 1
        numberOfThreads = 64
        multi_processing = True

        if not RTuseexistingdata:
            if multi_processing:
                range_start = 0
                range_end = range_start + int(
                    len(filesNames) / (numberOfThreads * numberOfIters))
                for it_i in range(0, numberOfIters):
                    print("Iteration " + str(it_i) + " Start ...")
                    input_data_list = []
                    process_list = []
                    queue_list = []

                    for i in range(0, numberOfThreads):
                        local_input_list = []
                        localfilesNames = filesNames[range_start:range_end]
                        range_start = range_end
                        range_end = range_start + int(
                            len(filesNames) /
                            (numberOfThreads * numberOfIters))
                        if (i == numberOfThreads -
                                2) and (it_i == numberOfIters - 1):
                            range_end = len(filesNames)
                        local_input_list = [
                            localfilesNames, self.dataPath, AIType
                        ]
                        q = Queue()
                        m = Manager()
                        return_dict = m.dict()
                        return_dict[1] = []
                        p = Process(target=local_process,
                                    args=(local_input_list, True, return_dict))
                        p.start()
                        process_list.append(p)
                        queue_list.append(return_dict)
                        input_data_list.append(local_input_list)
                    #for p in process_list:
                    #	p.join()
                    #listDataCollectors=[]
                    print("Getting Results ....")
                    already_parsed = []
                    while (len(already_parsed) != len(queue_list)):
                        for i_q in range(0, len(queue_list)):
                            if (i_q not in already_parsed) and (len(
                                    queue_list[i_q][1]) > 0):
                                already_parsed.append(i_q)
                                tempDataCollector = queue_list[i_q][1][0]
                                print("Getting Results .... " + str(i_q) +
                                      " ... " +
                                      str(len(tempDataCollector.TargetData)))
                                for i in range(
                                        len(tempDataCollector.TargetData) - 1,
                                        -1, -1):

                                    self.DataCollector.collectData([[
                                        tempDataCollector.ValuesData[0][i],
                                        tempDataCollector.ValuesData[1][i]
                                    ], tempDataCollector.TargetData[i]])
                                    del tempDataCollector.TargetData[i]
                                    del tempDataCollector.ValuesData[0][i]
                                    del tempDataCollector.ValuesData[1][i]
                    print("Getting Results Finished!")

                    #self.DataCollector.saveData(it_i)
                    print("Iteration " + str(it_i) + " End!")
            else:
                tempDataCollector = local_process(
                    [filesNames, self.dataPath, AIType])
                for i in tqdm(
                        range(len(tempDataCollector.TargetData) - 1, -1, -1)):
                    self.DataCollector.collectData([
                        tempDataCollector.ValuesData[i],
                        tempDataCollector.TargetData[i]
                    ])
                    del tempDataCollector.TargetData[i]
                    del tempDataCollector.ValuesData[i]
                self.DataCollector.saveData(0)
        if RTaddexistingweights:
            self.Trainer.setSavedModel(self.clf)
        self.Trainer.train(self.DataCollector, self.le)

        self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                               self.curDateStr + '.pkl')
        #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
        print("DataSave And Training " + str(self.dataPath) + " Finished!")

    def extract_time(self, json):
        try:
            return float(json['BsmPrint']['Metadata']['generationTime'])
        except KeyError:
            return 0

    def TrainData(self, AIType):
        print("Training " + str(self.dataPath) + " Started ...")
        self.Trainer.train(self.DataCollector, self.le)
        self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                               self.curDateStr + '.pkl')
        self.deltaCall = self.DataCollector.valuesCollection.shape[0] / 5
        print("Training " + str(self.dataPath) + " Finished!")

    def getNodeArray(self, bsmJsom, AIType):
        receiverId = bsmJsom['BsmPrint']['Metadata']['receiverId']
        pseudonym = bsmJsom['BsmPrint']['BSMs'][0]['Pseudonym']
        time = bsmJsom['BsmPrint']['Metadata']['generationTime']

        if RTDetectAttackTypes:
            label = bsmJsom['BsmPrint']['Metadata']['attackType']
        else:
            label = bsmJsom['BsmPrint']['Metadata']['mbType']
            if label == 'GlobalAttacker':
                label = 'Genuine'

        numLabel = np.array(self.le.transform([label])[0], dtype=np.int8)

        self.Storage.add_bsm(receiverId, pseudonym, time, bsmJsom,
                             self.arrayLength, numLabel)

        if time - self.filterdelta > RTFilterTime:
            self.filterdelta = time
            self.Storage.filter_bsms(time, RTFilterKeepTime)

        if ('SINGLE' in AIType):
            returnArray = self.Storage.get_array(receiverId, pseudonym)
        if ('FEATURES' in AIType):
            returnArray = self.Storage.get_array_features(
                receiverId, pseudonym)
        if ('AVEFEAT' in AIType):
            returnArray = self.Storage.get_array_MLP_features(
                receiverId, pseudonym, self.arrayLength)
        if ('AVERAGE' in AIType):
            returnArray = self.Storage.get_array_MLP(receiverId, pseudonym,
                                                     self.arrayLength)
        if ('RECURRENT' in AIType):
            returnArray = self.Storage.get_array_lstm(receiverId, pseudonym,
                                                      self.arrayLength)
        if ('RECUFEAT' in AIType):
            returnArray = self.Storage.get_array_lstm_feat(
                receiverId, pseudonym, self.arrayLength)
        if ('RECUSIN' in AIType):
            returnArray = self.Storage.get_array_lstm_sin(
                receiverId, pseudonym, self.arrayLength)
        if ('RECUMIX' in AIType):
            returnArray = self.Storage.get_array_lstm_mix(
                receiverId, pseudonym, self.arrayLength)
        if ('RECUALL' in AIType):
            returnArray = self.Storage.get_array_lstm_all(
                receiverId, pseudonym, self.arrayLength)
        if ('COMBINED' in AIType):
            returnArray = self.Storage.get_array_combined(
                receiverId, pseudonym, self.arrayLength)

        #print("cur_array: " + str(cur_array))
        #print("returnArray: " + str(returnArray))
        return returnArray
Example #6
0
class MlMain:
    initiated = False

    curDateStr = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    DataCollector = MlDataCollector()
    Trainer = MlTrainer()
    Storage = MlNodeStorage()
    arrayLength = 20

    collectDur = 0
    deltaCall = 1000

    clf = None
    savePath = './saveFile/saveFile_D20'
    dataPath = './MDBsms_Mix'

    meanRuntime = 0
    numRuntime = 0
    printRuntime = 10000
    printRuntimeCnt = 0

    def init(self, version, AIType):
        self.savePath = self.savePath + '_' + str(version)

        self.DataCollector.setCurDateSrt(self.curDateStr)
        self.DataCollector.setSavePath(self.savePath)
        self.Trainer.setCurDateSrt(self.curDateStr)
        self.Trainer.setSavePath(self.savePath)
        self.Trainer.setAIType(AIType)

        self.trainedModelExists(AIType)
        if RTreadDataFromFile:
            self.ReadDataFromFile(version, AIType)

    def mlMain(self, version, bsmJsonString, AIType):
        if not self.initiated:
            self.init(version, AIType)
            self.initiated = True

        start_time = time.time()

        bsmJsom = json.loads(bsmJsonString)
        curArray = self.getNodeArray(bsmJsom, AIType)

        if RTcollectData:
            if self.collectDur < self.deltaCall:
                self.collectDur = self.collectDur + 1
                self.DataCollector.collectData(curArray)
            else:
                print "DataSave And Training " + str(
                    self.deltaCall) + " Started ..."
                self.collectDur = 0
                self.DataCollector.saveData()

                if RTtrain:
                    self.Trainer.setValuesCollection(
                        self.DataCollector.getValuesCollection())
                    self.Trainer.setTargetCollection(
                        self.DataCollector.getTargetCollection())
                    print self.Trainer.valuesCollection.shape
                    self.Trainer.train()
                    self.clf = joblib.load(self.savePath + '/clf_' + AIType +
                                           '_' + self.curDateStr + '.pkl')
                    self.deltaCall = self.DataCollector.valuesCollection.shape[
                        0] / 5
                    #self.deltaCall = 10000000
                print "DataSave And Training " + str(
                    self.deltaCall) + " Finished!"

        return_value = False

        if self.clf is None:
            return_value = False
        else:
            if RTpredict:
                prediction = self.clf.predict(array([curArray[0]]))
                #print "======================================== " + str(prediction) + str(prediction[0][0]) + str(prediction[0][1])
                if prediction[0][0] > prediction[0][1]:
                    return_value = False
                else:
                    return_value = True
            #print prediction
            #print curArray[1]
            #print "========================================"

        end_time = time.time()
        self.meanRuntime = (self.numRuntime * self.meanRuntime +
                            (end_time - start_time)) / (self.numRuntime + 1)
        self.numRuntime = self.numRuntime + 1
        if self.printRuntimeCnt > self.printRuntime:
            self.printRuntimeCnt = 0
            print 'meanRuntime: ' + str(self.meanRuntime) + ' ' + str(
                self.numRuntime)
        else:
            self.printRuntimeCnt = self.printRuntimeCnt + 1

        return return_value

    def trainedModelExists(self, AIType):
        filesNames = [
            f for f in listdir(self.savePath) if isfile(join(self.savePath, f))
        ]
        print "trainedModelExists?"

        for s in filesNames:
            if s.startswith('clf_' + AIType) and s.endswith(".pkl"):
                self.curDateStr = s[-23:-4]

                print "Loading " + AIType + " " + self.curDateStr + " ..."
                self.clf = joblib.load(self.savePath + '/' + s)
                self.DataCollector.setCurDateSrt(self.curDateStr)
                self.Trainer.setCurDateSrt(self.curDateStr)
                self.DataCollector.loadData()
                self.Trainer.setValuesCollection(
                    self.DataCollector.getValuesCollection())
                self.Trainer.setTargetCollection(
                    self.DataCollector.getTargetCollection())

                #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
                print "Loading " + str(
                    self.DataCollector.valuesCollection.shape) + " Finished!"

    def ReadDataFromFile(self, version, AIType):
        print "DataSave And Training " + str(self.dataPath + '_' +
                                             version) + " Started ..."
        filesNames = [
            f for f in tqdm(listdir(self.dataPath + '_' + version))
            if isfile(join(self.dataPath + '_' + version, f))
        ]
        print "bsmDataExists?"

        ValuesData = []
        TargetData = []

        for i in tqdm(range(0, len(filesNames))):
            s = filesNames[i]
            if s.endswith(".bsm"):
                bsmJsonString = open(self.dataPath + '_' + version + '/' + s,
                                     'r').read()
                bsmJsom = json.loads(bsmJsonString)
                curArray = self.getNodeArray(bsmJsom, AIType)
                self.DataCollector.collectData(curArray)

        self.DataCollector.saveData()
        self.Trainer.setValuesCollection(
            self.DataCollector.getValuesCollection())
        self.Trainer.setTargetCollection(
            self.DataCollector.getTargetCollection())
        self.Trainer.train()
        self.clf = joblib.load(self.savePath + '/clf_' + AIType + '_' +
                               self.curDateStr + '.pkl')
        #self.deltaCall = self.DataCollector.valuesCollection.shape[0]/5
        print "DataSave And Training " + str(self.dataPath + '_' +
                                             version) + " Finished!"

    def getNodeArray(self, bsmJsom, AIType):
        receiverId = bsmJsom['BsmPrint']['Metadata']['receiverId']
        pseudonym = bsmJsom['BsmPrint']['BSMs'][0]['pseudonym']
        time = bsmJsom['BsmPrint']['Metadata']['generationTime']
        self.Storage.add_bsm(receiverId, pseudonym, time, bsmJsom)
        if (AIType == 'SVM'):
            returnArray = self.Storage.get_array(receiverId, pseudonym,
                                                 self.arrayLength)
        if (AIType == 'MLP_L1N15'):
            returnArray = self.Storage.get_array_MLP_L1N15(
                receiverId, pseudonym, self.arrayLength)
        if (AIType == 'MLP_L3N25'):
            returnArray = self.Storage.get_array_MLP_L3N25(
                receiverId, pseudonym, self.arrayLength)
        if (AIType == 'LSTM'):
            returnArray = self.Storage.get_array_lstm(receiverId, pseudonym,
                                                      self.arrayLength)

        #print "cur_array: " + str(cur_array)
        #print "returnArray: " + str(returnArray)
        return returnArray