def run(): # train_files, train_labels = read_data_file('./train_test_data_combined.txt') data_set, data_labels = load_test_set('./IRMAS-TrainingData/') train_files, test_files, train_labels, test_labels = train_test_split(data_set, data_labels, test_size=0.25) train_set, train_labels, test_set, test_labels = fit_train_test(train_files, train_labels, test_files, test_labels) print("test_labels length: ", len(test_labels)) print("test_files length: ", len(test_files)) print() print("train_labels length: ", len(train_labels)) print("train_files length: ", len(train_files)) print() train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) train_set = get_feature_vector_2(train_files) test_set = get_feature_vector_2(test_files) # linear_regression(train_set, train_classes, test_set, test_classes, encoded_classes) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): # train_files, train_labels = read_data_file('./train_test_data_combined.txt') train_files, train_labels = load_train_set('./IRMAS-TrainingData/', single_instrument=True) train_set = get_feature_vector(train_files) song_name = "(02) dont kill the whale-1" test_files, test_labels = cut_a_single_song( f'./IRMAS-TestingData/Part1/{song_name}') print("test_labels length: ", len(test_labels)) print("test_files length: ", len(test_files)) print() print("train_labels length: ", len(train_labels)) print("train_files length: ", len(train_files)) # train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) test_set = get_feature_vector_2(test_files) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): # train_files, train_labels = load_train_set('./data-set/') train_files, train_labels = read_data_file() test_files, test_labels = load_test_set('./IRMAS-TrainingData/') train_files, train_labels, test_files, test_labels = fit_train_test( train_files, train_labels, test_files, test_labels) print("test_labels length: ", len(test_labels)) print("test_files length: ", len(test_files)) print() print("train_labels length: ", len(train_labels)) print("train_files length: ", len(train_files)) train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) # train_set = get_feature_vector(train_files) train_set = train_files test_set = get_feature_vector(test_files) # read_write_data.create_data_file(train_set, train_labels) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes) adaboost(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): data_set, data_labels = read_data_file('./train_test_data_combined.txt') train_files, test_files, train_labels, test_labels = train_test_split(data_set, data_labels, test_size=0.25) train_set, train_labels, test_set, test_labels = fit_train_test(train_files, train_labels, test_files, test_labels) train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): data_set, data_labels = load_by_genre(path='./IRMAS-TrainingData/') X = get_feature_vector_2(data_set) train_set, test_set, train_labels, test_labels = train_test_split( X, data_labels, test_size=0.25) train_set, train_labels, test_set, test_labels = fit_train_test( train_set, train_labels, test_set, test_labels) train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes) adaboost(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): data_set, data_labels = load_train_set('./IRMAS-TrainingData/') data_set, data_labels = load_test_set() train_files, test_files, train_labels, test_labels = train_test_split( data_set, data_labels, test_size=0.25) train_files, train_labels, test_files, test_labels = fit_train_test( train_files, train_labels, test_files, test_labels) train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) train_set = get_feature_vector(train_files) test_set = get_feature_vector(test_files) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes) adaboost(train_set, train_classes, test_set, test_classes, encoded_classes)
def run(): # data_set, data_labels = load_train_set('./data-set/') data_set, data_labels = read_data_file() train_files, test_files, train_labels, test_labels = train_test_split( data_set, data_labels, test_size=0.25) train_files, train_labels, test_files, test_labels = fit_train_test( train_files, train_labels, test_files, test_labels) train_classes, encoded_classes = label_encoder(train_labels) test_classes = label_encoder_for_test(encoded_classes, test_labels) # train_set = get_feature_vector(train_files) train_set = train_files test_set = test_files # test_set = get_feature_vector(test_files) knn(train_set, train_classes, test_set, test_classes, encoded_classes) svm(train_set, train_classes, test_set, test_classes, encoded_classes) random_forest(train_set, train_classes, test_set, test_classes, encoded_classes) adaboost(train_set, train_classes, test_set, test_classes, encoded_classes)