from skopt import BayesSearchCV from catboost import CatBoostRegressor from scipy.stats import norm,uniform import numpy as np import pickle """ Used to generate trained GB models with different train-test splits. """ np.random.seed(100) df = pickle.load(open('../../data/pairs_pdos.pkl')) if True: X,y = train_prep_pdos(df,include_WF=True,dE=0.1) model_type = 'pdos' else: X,y = train_prep(df,include_WF=True) model_type = 'moments' if False: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['comp','ads_a','ads_b']) split_type = 'comp_rxn' elif True: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['comp']) split_type = 'comp' elif False: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['ads_a','ads_b']) split_type = 'rxn' else:
print('Model Performance') print('Average Error: {:0.4f} eV.'.format(mae)) return mae if __name__ == '__main__': df = pickle.load(open('data/pairs_pdos.pkl')) features = 'moments' # #pdos,'moments' bayes = True #Feature Selection if features == 'moments': X, y = train_prep(df) elif features == 'pdos': X, y = train_prep_pdos(df, stack=False, include_WF=False, dE=0.1) X_train, X_dev, X_test, y_train, y_dev, y_test, groups = split_by_cols( df, X, y, ['comp', 'ads_a', 'ads_b'], ret_groups=True) rf = ensemble.RandomForestRegressor(n_estimators=100) group_kfold = GroupKFold(n_splits=3) #print(X_train.shape[1]),np.sqrt(X_train.shape[1]) if bayes: random_grid = { #'n_estimators': (5,100), 'max_features': (int(np.sqrt(X_train.shape[1])), X_train.shape[1]), 'max_depth': (5, 50), 'min_samples_split': (2, 10), 'min_samples_leaf': (2, 5),
key = [ 'comp', 'bulk', 'facet', 'coord', 'site_b', 'ads_a', 'ads_b', 'comp_g', 'dE' ] df = pickle.load(open('data/pairs_pdos.pkl')) #models = ['rf','lr','krr']#,'NN'] models = ['rf', 'boost'] features = 'pdos' # #pdos,'moments' split = 'pairs' #Feature Selection if features == 'moments': X, y = train_prep(df) elif features == 'pdos': X, y = train_prep_pdos(df, stack=False, include_WF=True) #X,y = train_prep_pdos(df,include_WF=True,stack=True) for m in models: #Train/test split if split == 'none': X_train = X X_test = X y_train = y y_test = y elif split == 'random': np.random.seed(100) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3) #need to add dev X_dev, X_test, y_dev, y_test = train_test_split( X_test, y_test, test_size=0.5) #need to add dev