epochs = [] true_data_s = pd.DataFrame() predict_data_s = pd.DataFrame() for fold in range(n_kfold): epoch, true_data, predict_data = mofgcn_new_target( gene=gene, cna=cna, mutation=mutation, drug_feature=feature_drug, response_mat=cell_drug, null_mask=null_mask, target_dim=dim, target_index=target_index, evaluate_fun=roc_auc, device="cuda:0") true_data_s = true_data_s.append(translate_result(true_data)) predict_data_s = predict_data_s.append( translate_result(predict_data)) epochs.append(epoch) if dim: file_drug.write(str(target_index) + ":" + str(epochs) + "\n") true_data_s.to_csv("./result_data/drug_" + str(target_index) + "_true_data.csv") predict_data_s.to_csv("./result_data/drug_" + str(target_index) + "_predict_data.csv") else: file_cell.write(str(target_index) + ":" + str(epochs) + "\n") true_data_s.to_csv("./result_data/cell_" + str(target_index) + "_true_data.csv") predict_data_s.to_csv("./result_data/cell_" + str(target_index) + "_predict_data.csv")
n_hid2=64, alpha=8.70, device="cuda:0") opt = Optimizer(model, sampler.train_data, sampler.test_data, sampler.test_mask, sampler.train_mask, roc_auc, lr=1e-3, epochs=1000, device="cuda:0").to("cuda:0") epoch, true_data, predict_data = opt() epochs.append(epoch) true_datas = true_datas.append(translate_result(true_data)) predict_datas = predict_datas.append(translate_result(predict_data)) file = open("./result_data/epochs.txt", "w") file.write(str(epochs)) file.close() pd.DataFrame(true_datas).to_csv("./result_data/true_data.csv") pd.DataFrame(predict_datas).to_csv("./result_data/predict_data.csv") """ # 网格计算超参数,除alpha外 save_format = "{:^5d}{:^5d}{:^5d}{:^7d}{:^7d}{:7.2f}{:^9.5f}{:^9.4f}" file = open("grid_result.txt", "w") sigmas = [2, 3, 5, 7, 9] knns = [2, 3, 5, 7, 9, 11] iterates = [2, 3, 5, 7, 9] n_hid1s = [36, 64, 128, 192]