oExp = Experiment() oDataSet = DataSet() base = np.loadtxt("Datasets/artifitial1.data", usecols=range(1), delimiter=",") classes = np.loadtxt("Datasets/artifitial1.data", usecols=-1, delimiter=",") for x, y in enumerate(base): oDataSet.add_sample_of_attribute(np.array(list([np.float32(y)]) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() oDataSet.labels = np.array([classes]).T for j in range(20): slices = KFold(n_splits=K_FOLD) oData = Data(1, 31, samples=50) indices = np.arange(oDataSet.attributes.shape[0]) np.random.shuffle(indices) oData.Testing_indexes = indices[int(oDataSet.attributes.shape[0] * 0.85):] oData.Training_indexes = indices[:int(oDataSet.attributes.shape[0] * 0.85)] grid_result = np.zeros((len(GRID), K_FOLD)) for g1, g_param in enumerate(GRID): k_slice = 0 for train, test in slices.split(oData.Training_indexes): mpl = multi_Layered_perceptron_linear(LEARNING_RATE, (oDataSet.attributes.shape[1], g_param, 1)) mpl.train_regression(oDataSet.attributes[oData.Training_indexes[train]], oDataSet.labels[oData.Training_indexes[train]], epochs) y_pred = [] y_true = [] for i in test:
usecols=range(34), dtype=int, delimiter=",") classes = np.loadtxt("Datasets/dermatology.data", dtype=int, usecols=-1, delimiter=",") for x, y in enumerate(base): oDataSet.add_sample_of_attribute( np.array(list(np.float32(y)) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() for j in range(20): print(j) oData = Data(len(oDataSet.labelsNames), 31, samples=50) oData.random_training_test_by_percent( np.unique(classes, return_counts=True)[1], 0.8) perc = Layered_perceptron_Logistic(learning_rate, len(oDataSet.labelsNames)) perc.train(oDataSet.attributes[oData.Training_indexes], oDataSet.labels[oData.Training_indexes], epochs) oData.model = perc oData.confusion_matrix = np.zeros( (len(oDataSet.labelsNames), len(oDataSet.labelsNames))) for i in oData.Testing_indexes: data = np.matrix(np.hstack(([-1], oDataSet.attributes[i]))).T predicted = perc.predict(data) oData.confusion_matrix[int(oDataSet.labels[i]), predicted] += 1 print(oData) oDataSet.append(oData)
learning_rate = 0.01 epochs = 5000 oExp = Experiment() oDataSet = DataSet() base = np.loadtxt("Datasets/artifitial1.data", usecols=range(2), delimiter=",") classes = np.loadtxt("Datasets/artifitial1.data", dtype=int, usecols=-1, delimiter=",") for x, y in enumerate(base): oDataSet.add_sample_of_attribute(np.array(list(np.float32(y)) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) # oDataSet.normalize_data_set() for j in range(20): print(j) oData = Data(len(oDataSet.labelsNames), 31, samples=50) oData.random_training_test_by_percent([50, 50, 50], 0.8) perc = Layered_perceptron(learning_rate, len(oDataSet.labelsNames)) perc.train(oDataSet.attributes[oData.Training_indexes], oDataSet.labels[oData.Training_indexes], epochs) oData.model = perc oData.confusion_matrix = np.zeros((len(oDataSet.labelsNames), len(oDataSet.labelsNames))) for i in oData.Testing_indexes: data = np.matrix(np.hstack(([-1], oDataSet.attributes[i]))).T predicted = perc.predict(data) oData.confusion_matrix[int(oDataSet.labels[i]), predicted] += 1 print(oData) oDataSet.append(oData) oExp.add_data_set(oDataSet, description=" Experimento Artificial LP 20 realizaƧoes.".format()) oExp.save("Objects/EXP01_1_LP_20.gzip".format())
dtype=int, delimiter=",") classes = np.loadtxt("Datasets/breast-cancer-wisconsin.data", dtype=int, usecols=-1, delimiter=",") for x, y in enumerate(base): oDataSet.add_sample_of_attribute( np.array(list(np.float32(y)) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() for j in range(10): slices = KFold(n_splits=K_FOLD, shuffle=True) oData = Data(len(oDataSet.labelsNames), 31, samples=50) oData.random_training_test_by_percent( np.unique(classes, return_counts=True)[1], 0.8) grid_result = np.zeros((len(GRID_NEURON), len(GRID_B), K_FOLD)) for g1, g_param in enumerate(GRID_NEURON): for g2, g2_param in enumerate(GRID_B): k_slice = 0 for train, test in slices.split(oData.Training_indexes): K.clear_session() model = Sequential() rbflayer = RBFLayer( g_param, initializer=InitCentersRandom( oDataSet.attributes[oData.Training_indexes[train]]), betas=g2_param,
oDataSet = DataSet() base = np.loadtxt("Datasets/iris_3.data", usecols=range(4), delimiter=",") classes = np.loadtxt("Datasets/iris_3.data", dtype=object, usecols=-1, delimiter=",") for x, y in enumerate(base): oDataSet.add_sample_of_attribute( np.array(list(np.float32(y)) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() for j in range(20): print(j) oData = Data(2, 31, samples=50) oData.random_training_test_by_percent([100, 50], 0.8) perc = Perceptron(learning_rate) perc.train(oDataSet.attributes[oData.Training_indexes], oDataSet.labels[oData.Training_indexes], epochs) oData.model = perc oData.confusion_matrix = np.zeros((2, 2)) for i in oData.Testing_indexes: data = np.matrix(np.hstack(([-1], oDataSet.attributes[i]))).T oData.confusion_matrix[int(oDataSet.labels[i]), perc.predict(data)] += 1 oDataSet.append(oData) oExp.add_data_set( oDataSet, description=" Experimento iris PS 20 realizaƧoes.".format()) oExp.save("Objects/EXP01_3_PS_20.gzip".format())
oExp = Experiment() oDataSet = DataSet() base = np.loadtxt("Datasets/dt_1.txt", usecols=range(1), delimiter=" ") classes = np.loadtxt("Datasets/dt_1.txt", usecols=-1, delimiter=" ") for x, y in enumerate(base): oDataSet.add_sample_of_attribute( np.array(list([np.float32(y)]) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() classes = np.array([classes]).T for j in range(20): print(j) oData = Data(2, 31, samples=50) indices = np.arange(oDataSet.attributes.shape[0]) np.random.shuffle(indices) oData.Testing_indexes = indices[int(oDataSet.attributes.shape[0] * 0.85):] oData.Training_indexes = indices[:int(oDataSet.attributes.shape[0] * 0.85)] perc = Perceptron_Adaline(learning_rate) perc.train(oDataSet.attributes[oData.Training_indexes], classes[oData.Training_indexes].copy(), epochs) oData.model = perc ert = 0 plotar = [] for i in oData.Testing_indexes: data = np.matrix(np.hstack(([-1], oDataSet.attributes[i]))).T predict = perc.predict(data)[0, 0] plotar.append([classes[i, 0], predict])
for x, y in enumerate(base): oDataSet.add_sample_of_attribute(np.array(list([np.float32(y)]) + [classes[x]])) oDataSet.attributes = oDataSet.attributes.astype(float) oDataSet.normalize_data_set() oDataSet.labels = np.array([classes]).T for j in range(20): experiment = Experiment(api_key="9F7edG4BHTWFJJetI2XctSUzM", project_name="mest-rn-t6-artifitial1", workspace="lukkascost", ) experiment.set_name("REALIZACAO_{:02d}".format(j + 1)) slices = KFold(n_splits=K_FOLD, shuffle=True) oData = Data(1, 31, samples=50) indices = np.arange(oDataSet.attributes.shape[0]) np.random.shuffle(indices) oData.Testing_indexes = indices[int(oDataSet.attributes.shape[0] * 0.85):] oData.Training_indexes = indices[:int(oDataSet.attributes.shape[0] * 0.85)] grid_result = np.zeros((len(GRID_NEURON), len(GRID_B), K_FOLD)) for g1, g_param in enumerate(GRID_NEURON): for g2, g2_param in enumerate(GRID_B): k_slice = 0 for train, test in slices.split(oData.Training_indexes): model = Sequential() rbflayer = RBFLayer(g_param, initializer=InitCentersRandom(oDataSet.attributes[oData.Training_indexes[train]]), betas=g2_param,