Example #1
0
 def runTest(self):
     data = cleanData(self.filename)
     knearest = getDiscreetClassifier('knearest')
     resultTime = CV.doShuffleCrossValidation(knearest, data.data,
                                              data.target)
     print('knearest result: ' + str(resultTime.meanScore) +
           ' Time taken: ' + str(resultTime.timeTaken))
     self.assertTrue(resultTime.timeTaken > 0)
Example #2
0
	def runTest(self):
		svm = 'svm'
		svmC = getDiscreetClassifier(svm)
		saveAble = TrainClassifier.trainWithLabels(svmC,self.data.data, self.data.target)
		meanScore = CV.doShuffleCrossValidation(svmC, self.data.data, self.data.target).meanScore
		s = saveClassifierAsString(saveAble)
		clf = loadClassifierFromString(s)
		newScore = clf.score(self.data.data,self.data.target)
		result = abs(meanScore - newScore)
		# Ensure the score after reloading the classifier is close to the cross validation score
		self.assertTrue(result < .05)
 def runTest(self):
     svm = 'svm'
     svmC = getDiscreetClassifier(svm)
     meanScore = CV.doShuffleCrossValidation(svmC, self.data.data,
                                             self.data.target).meanScore
     trained = TrainClassifier.trainWithLabels(getDiscreetClassifier(svm),
                                               self.data.data,
                                               self.data.target)
     predictions = predict(trained, self.data.data)
     # Ensure the score after from predicting is close to the cross validation score
     correct = 0
     for x in range(len(predictions)):
         if (predictions[x][0] == self.data.target[x]):
             correct += 1
     newScore = float(correct) / len(self.data.target)
     result = abs(meanScore - newScore)
     self.assertTrue(result < .05)
Example #4
0
	def runTest(self):
		leastSquares = 'leastSquares'
		kC = getDiscreetClassifier(leastSquares)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('LeastSquares result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #5
0
	def runTest(self):
		dt = 'decisionTree'
		kC = getDiscreetClassifier(dt)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Decision Tree result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #6
0
	def runTest(self):
		pa = 'passiveAggressive'
		kC = getDiscreetClassifier(pa)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Passive Aggressive result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #7
0
	def runTest(self):
		nCentroid = 'nearestCentroid'
		kC = getDiscreetClassifier(nCentroid)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Nearest Centroid result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #8
0
	def runTest(self):
		preceptron = 'perceptron'
		kC = getDiscreetClassifier(preceptron)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Perceptron result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #9
0
	def runTest(self):
		rForest = 'randomForest'
		kC = getDiscreetClassifier(rForest)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Random Forest result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #10
0
	def runTest(self):
		sgd = 'sgd'
		kC = getDiscreetClassifier(sgd)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('SGD result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #11
0
	def runTest(self):
		gauss = 'guassNB'
		kC = getDiscreetClassifier(gauss)
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('Guassian Naive Bayes result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #12
0
	def runTest(self):
		kC = getDiscreetClassifier('logisticRegression')
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('logisticRegression result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #13
0
	def runTest(self):
		kC = getDiscreetClassifier('bayesianRidge')
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('BayesianRidge result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')
Example #14
0
	def runTest(self):
		kC = getDiscreetClassifier('orthogonalMatchingPursuit')
		meanScoreTimeTaken = CV.doShuffleCrossValidation(kC, self.data.data, self.data.target)
		print('OrthogonalMatchingPursuit result: ' + str(meanScoreTimeTaken.meanScore) + ' Time taken:' + str(meanScoreTimeTaken.timeTaken) + ' seconds')