no = int(noLimit[0]) MAX_SAMPLES = int(sampleLimit[0]) f = open('Output/AdaBoostPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of AdaBoost with property based testing approach:\n") #AdaBoostAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair, failedAtt = quickTestMlAt.funcMain(MAX_SAMPLES, 'AdaBoostAdult', df) execTime = execTime + (time.time() - start_time) failed_trials = failed_trials + failedAtt if ((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime / no failed_trials = round(failed_trials / no) f.write("\n") f.write("Execution time of AdaBoostAdult model is:\n") f.write(str(execTime))
f = open('Output/NBPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of NB with property based testing approach:\n") #NBAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair, failedAtt = quickTestMlAt.funcMain(MAX_SAMPLES, 'NBAdult', df) execTime = execTime + (time.time() - start_time) failed_trials = failed_trials+failedAtt if((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime/no failed_trials = round(failed_trials/no) f.write("\n") f.write("Execution time of NBAdult model is:\n") f.write(str(execTime))
f = open('Output/kNNPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of kNN with property based testing approach:\n") #kNNAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair = quickTestMlAt.funcMain(MAX_SAMPLES, 'kNNAdult', df) execTime = execTime + (time.time() - start_time) if((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime/no f.write("\n") f.write("Execution time of kNNAdult model is:\n") f.write(str(execTime))
#Setting parameters MAX_SAMPLES = int(input('Give the MAX_SAMPLES limit')) f = open('Output/ShortOutputPropFile.txt', 'w') f.write("\n") f.write("Execution results of short property based testing script:\n") print('Start executing property based testing') #NBMpg model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AutoMPG.csv') for i in tqdm(range(no)): start_time = time.time() cexPair, failedAtt = quickTestMlAt.funcMain(MAX_SAMPLES, 'NBMpg', df) execTime = execTime + (time.time() - start_time) failed_trials = failed_trials + failedAtt if ((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True if (cexFlag == False): f.write("\n") f.write("No Counter example is found") execTime = execTime / no failed_trials = round(failed_trials / no) f.write("\n")
f = open('Output/SVMPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of SVM with property based testing approach:\n") #SVMAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair, failedAtt = quickTestMlAt.funcMain(MAX_SAMPLES, 'SVMAdult', df) execTime = execTime + (time.time() - start_time) failed_trials = failed_trials+failedAtt if((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime/no failed_trials = round(failed_trials/no) f.write("\n") f.write("Execution time of SVMAdult model is:\n") f.write(str(execTime))
no = int(noLimit[0]) MAX_SAMPLES = int(sampleLimit[0]) f = open('Output/MLPPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of MLP with property based testing approach:\n") #MLPAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair = quickTestMlAt.funcMain(MAX_SAMPLES, 'MLPAdult', df) execTime = execTime + (time.time() - start_time) if ((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime / no f.write("\n") f.write("Execution time of MLPAdult model is:\n") f.write(str(execTime)) f.write("\n")
no = int(noLimit[0]) MAX_SAMPLES = int(sampleLimit[0]) f = open('Output/LogRegPropertyTestOutputFile.txt', 'w') f.write("\n") f.write("Execution result of LogReg with property based testing approach:\n") #LogRegAdult model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv('Datasets/AdultMod.csv') for i in tqdm(range(no)): start_time = time.time() cexPair, failedAtt = quickTestMlAt.funcMain(MAX_SAMPLES, 'LogRegAdult', df) execTime = execTime + (time.time() - start_time) failed_trials = failed_trials + failedAtt if ((len(cexPair) >= 1) & (cexFlag == False)): f.write("\n") f.write("Counter example pair is:\n") f.write(str(cexPair)) cexFlag = True execTime = execTime / no failed_trials = round(failed_trials / no) f.write("\n") f.write("Execution time of LogRegAdult model is:\n") f.write(str(execTime))
try: with open('param_dict.csv', 'w', newline='') as csv_file: writer = cv.writer(csv_file) for key, value in paramDict.items(): writer.writerow([key, value]) except IOError: print("I/O error") #actor_person_celestial model evaluation cexFlag = False execTime = 0 failed_trials = 0 #Reading the dataset df = pd.read_csv( 'Datasets/dbo_Actor_dbo_CelestialBody_dbo_Person_Multi.csv') for i in tqdm(range(iteration_no)): cexPair = quickTestMlAt.funcMain(MAX_SAMPLES, job, df) if (len(cexPair) >= 1) & (cexFlag == False): if j == 0: cex_count_S1 += 1 elif j == 1: cex_count_D1 += 1 elif j == 2: cex_count_D2 += 1 if j == 0: f.write('Probability value of S1 is: ' + str(cex_count_S1 / iteration_no) + '\n') elif j == 1: f.write('Probability value of D1 is: ' + str(cex_count_D1 / iteration_no) + '\n') elif j == 2: f.write('Probability value of D2 is: ' +