Example #1
0
def component4d():
  print("-----Component 4d (Check results folder)-----")
  model1 = MarcovModel("franz_kafka_collected_works.txt", "word", 3)
  model2 = MarcovModel("practice_phrenology_simplified.txt", "word", 3)
  model3 = MarcovModel("william_shakespeare_collected_works.txt", "word", 3)

  models = [model1, model2, model3]

  f = open("results/component4d.txt", "a")

  length_of_test_input = 60
  for model in models:
    f.write(f"\n\n-----Estimation Results for {model.corpus_filename}-----\n")
    for estimator_model in models:
      f.write(f"\n-----When estimated by: {estimator_model.corpus_filename}-----\n")
      estimates = []
      text = ""
      nextPos = 0
      while nextPos < (len(model.testset) - length_of_test_input):
        text = model.testset[nextPos:nextPos + length_of_test_input]
        estimate = estimator_model.estimate(text)
        # print(estimate)
        estimates.append(estimate)
        text = ""
        nextPos += length_of_test_input
      f.write(f"{statistics.mean(estimates)}")
Example #2
0
def component4f():
  # intentionally chose Franz Kafka and Edgar Allan Poe because we thought they were similar
  print("-----Component 4f (Check results folder)-----")
  f = open("results/component4f.txt", "a")
  for order in range(1, 4):
    f.write("\n Level: Word\n")
    f.write(f"\n Order: {order}\n")
    model1 = MarcovModel("franz_kafka_collected_works.txt", "word", 1)
    model2 = MarcovModel("edgar_allan_poe_collected_works.txt", "word", 1)

    models = [model1, model2]

    length_of_test_input = 60
    for model in models:
      f.write(f"\n\n-----Estimation Results for {model.corpus_filename}-----\n")
      for estimator_model in models:
        f.write(f"\n-----When estimated by: {estimator_model.corpus_filename}-----\n")
        estimates = []
        text = ""
        nextPos = 0
        while nextPos < (len(model.testset) - length_of_test_input):
          text = model.testset[nextPos:nextPos + length_of_test_input]
          estimate = estimator_model.estimate(text)
          # print(estimate)
          estimates.append(estimate)
          text = ""
          nextPos += length_of_test_input
        f.write(f"{statistics.mean(estimates)}")
Example #3
0
def component2f():
    print("-----Component 2f (Check results folder)-----")
    f = open("results/component2f.txt", "a")

    for order in range(1, 13):
        f.write(f"\n Order: {order} \n")
        model = MarcovModel("harry_potter_1.txt", "word", order)
        f.write(model.generate(40))
Example #4
0
def component2b():
    print("-----Component 2b (Check results folder)-----")
    f = open("results/component2b.txt", "a")

    for order in range(1, 6):
        f.write(f"\n-----Level: Word / Order: {order}-----\n")
        model = MarcovModel("franz_kafka_collected_works.txt", "word", order)
        f.write(model.generate(20, "The"))
Example #5
0
def component4():
    # Basic idea for the hybrid generation is to prioritize meaning over syntax. In other words, we generate a text using the original generate method. Then you correct any jarring grammar mistakes with the pos generation scheme.
    print("-----working on component4 (Check 'results' folder)-----")
    f = open("results/component4.txt", "a")
    model = MarcovModel("arthur_conan_doyle_collected_works.txt",
                        level="word",
                        order=3,
                        hybrid=True)
    for i in range(3):
        f.write("-----Hybrid Generate Engaged, Level: word, Order: 3-----\n")
        f.write(model.generate(50) + "\n")
Example #6
0
def component3b():
    print("-----working on component3b (Check 'results' folder)-----")
    f = open("results/component3b.txt", "a")
    f.write("\n-----POS ENGAGED-----\n\n")
    for order in range(1, 8):
        model = MarcovModel("alexander_dumas_collected_works.txt",
                            level="word",
                            order=order,
                            pos=True)
        f.write(
            f"-----Results for {model.corpus_filename}, Order: {order} -----\n"
        )
        f.write(model.generate(30) + "\n")
Example #7
0
def component2e():
    print("-----Component 2e (Check results folder)-----")
    model1 = MarcovModel("franz_kafka_collected_works.txt", "character", 5)
    model2 = MarcovModel("arthur_conan_doyle_collected_works.txt", "word", 3)
    model3 = MarcovModel("edgar_allan_poe_collected_works.txt", "word", 2)

    models = [model1, model2, model3]
    f = open("results/component2e.txt", "a")

    for model in models:
        f.write(
            f"\n-----Results for {model.corpus_filename} / Level: {model.level} / Order: {model.order}-----\n"
        )
        f.write(model.generate(30))
Example #8
0
def component3b():
  print("-----Component 3b (Check results folder)-----")
  f = open("results/component3b.txt", "a")

  # Sue
  model1 = MarcovModel("harry_potter_1.txt", "word", 5)
  # Yemi
  model2 = MarcovModel("franz_kafka_collected_works.txt", "word", 5)
  # Nicole
  model3 = MarcovModel("origin_of_species.txt", "word", 5)
  # Maanya
  model4 = MarcovModel("practice_phrenology_simplified.txt", "word", 5)

  models = [model1, model2, model3, model4]

  for model in random.sample(models, len(models)):
    f.write("\nmodel: \n")
    f.write(model.generate(30))
Example #9
0
def component3c():
  print("-----Component 3c (Check results folder)-----")
  f = open("results/component3c.txt", "a")

  # Sue
  model1 = MarcovModel("harry_potter_1.txt", "word", 4)
  # Yemi
  model2 = MarcovModel("franz_kafka_collected_works.txt", "word", 4)
  # Nicole
  model3 = MarcovModel("origin_of_species.txt", "word", 4)
  # Maanya
  model4 = MarcovModel("practice_phrenology_simplified.txt", "word", 4)

  models = [model1, model2, model3, model4]

  for model in random.sample(models, len(models)):
    f.write(f"\n-----{model.corpus_filename}/ Level: Word / Order: 4-----\n")
    f.write(model.generate(35))
Example #10
0
def component2d():
    print("-----Component 2d (Check results folder)-----")
    f = open("results/component2d.txt", "a")
    f.write(f"\n-----Mystery Model / Level: Character / Order: 3-----\n")

    model1 = MarcovModel("franz_kafka_collected_works.txt", "character", 3)
    model2 = MarcovModel("arthur_conan_doyle_collected_works.txt", "character",
                         3)

    f.write("\n Results for Mystery Model \n")
    f.write(model1.generate(50, "The"))
    f.write("\n\n Results for Mystery Model \n")
    f.write(model2.generate(50, "The"))
Example #11
0
def component3c():
    print("-----working on component3c (Check 'results' folder)-----")
    f = open("results/component3c.txt", "a")
    f.write("-----without the POS-----")
    model = MarcovModel("alexander_dumas_collected_works.txt",
                        level="word",
                        order=5,
                        pos=False)
    f.write(model.generate(30) + "\n")
    f.write("-----with the POS-----")
    model2 = MarcovModel("alexander_dumas_collected_works.txt",
                         level="word",
                         order=5,
                         pos=True)
    f.write(model2.generate(30) + "\n")
Example #12
0
def component2c():
    print("-----Component 2c (Check results folder)-----")
    f = open("results/component2c.txt", "a")

    for order in range(1, 6):
        f.write(f"\n-----Mystery Model / Level: Word / Order: {order}-----\n")

        model1 = MarcovModel("franz_kafka_collected_works.txt", "word", order)
        model2 = MarcovModel("arthur_conan_doyle_collected_works.txt", "word",
                             order)

        f.write("\n Level: word \n")
        f.write(f"\n Order: {order} \n")
        f.write("\n Results for Mystery Model \n")
        f.write(model1.generate(50, "The"))
        f.write("\n Results for Mystery Model \n")
        f.write(model2.generate(50, "The"))