def test_optimizer_override(self): ls = MS.GradientDescent(lr=0.5) cost = MC.NegativeLogLikelihood() inp = ML.Input(1, 'inp') h = ML.Hidden(5, activation=MA.Tanh(), learningScenari=[MS.Fixed("b")], name="h") o = ML.SoftmaxClassifier( 2, learningScenari=[MS.GradientDescent(lr=0.5), MS.Fixed("W")], cost=cost, name="out") net = inp > h > o net.init() ow = o.getP('W').getValue() ob = o.getP('b').getValue() hw = h.getP('W').getValue() hb = h.getP('b').getValue() for x in xrange(1, 10): net["out"].train({ "inp.inputs": [[1]], "out.targets": [1] })["out.drive.train"] self.assertTrue(sum(ow[0]) == sum(o.getP('W').getValue()[0])) self.assertTrue(sum(ob) != sum(o.getP('b').getValue())) self.assertTrue(sum(hb) == sum(h.getP('b').getValue())) self.assertTrue(sum(hw[0]) != sum(h.getP('W').getValue()[0]))
def testRecurrences(self): import Mariana.recurrence as MREC import Mariana.reshaping as MRES ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() # for clas in [MREC.RecurrentDense, MREC.LSTM, MREC.GRU] : for clas in [MREC.RecurrentDense]: inp = ML.Input((None, 3), 'inp') r = clas(2, onlyReturnFinal=True, name="rec") reshape = MRES.Reshape((-1, 2), name="reshape") o = ML.SoftmaxClassifier( 2, cost=cost, learningScenari=[MS.GradientDescent(lr=0.5)], name="out") net = inp > r > reshape > o net.init() inputs = [[[1, 1], [1, 0], [1, 1]], [[1, 0], [0, 1], [1, 0]]] oldWih = r.getP("W_in_to_hid").getValue() oldWhh = r.getP("W_hid_to_hid").getValue() for x in xrange(1, 100): net["out"].train({ "inp.inputs": inputs, "out.targets": [1, 1, 1] })["out.drive.train"] self.assertTrue( oldWih.mean() != r.getP("W_in_to_hid").getValue().mean()) self.assertTrue( oldWhh.mean() != r.getP("W_hid_to_hid").getValue().mean())
def test_multiinputs(self): ls = MS.GradientDescent(lr=0.1) inpA = ML.Embedding(2, 2, 2, name="IA") inpB = ML.Input(2, name="IB") inpNexus = ML.Composite(name="InputNexus") h1 = ML.Hidden(32, activation=MA.ReLU(), decorators=[], regularizations=[], name="Fully-connected1") o = ML.Regression(2, decorators=[], activation=MA.ReLU(), learningScenario=ls, costObject=MC.CrossEntropy(), name="Out", regularizations=[]) inpA > inpNexus inpB > inpNexus m = inpNexus > h1 > o m.init()
def test_save_load_pickle(self) : import os import Mariana.network as MN ls = MS.GradientDescent(lr = 0.1) cost = MC.NegativeLogLikelihood() i = ML.Input(2, 'inp') h = Hidden_layerRef(i, 10, activation = MA.ReLU(), name = "Hidden_0.500705866892") o = ML.SoftmaxClassifier(2, learningScenario = ls, costObject = cost, name = "out") mlp = i > h > o self.xor_ins = numpy.array(self.xor_ins) self.xor_outs = numpy.array(self.xor_outs) for i in xrange(1000) : mlp.train(o, inp = self.xor_ins, targets = self.xor_outs ) mlp.save("test_save") mlp2 = MN.loadModel("test_save.mar.mdl.pkl") o = mlp.outputs.values()[0] v1 = mlp.propagate( o.name, inp = self.xor_ins )["outputs"] v2 = mlp2.propagate( o.name, inp = self.xor_ins )["outputs"] self.assertEqual(numpy.sum(v1), numpy.sum(v2)) self.assertEqual(mlp["Hidden_0.500705866892"].otherLayer.name, mlp2["Hidden_0.500705866892"].otherLayer.name) os.remove('test_save.mar.mdl.pkl')
def test_embedding(self): """the first 3 and the last 3 should be diametrically opposed""" data = [[0], [1], [2], [3], [4], [5]] targets = [0, 0, 0, 1, 1, 1] ls = MS.GradientDescent(lr=0.5) cost = MC.NegativeLogLikelihood() emb = ML.Embedding(1, 2, len(data), learningScenario=ls, name="emb") o = ML.SoftmaxClassifier(2, learningScenario=MS.Fixed(), costObject=cost, name="out") net = emb > o miniBatchSize = 2 for i in xrange(2000): for i in xrange(0, len(data), miniBatchSize): net.train(o, emb=data[i:i + miniBatchSize], targets=targets[i:i + miniBatchSize]) embeddings = emb.getEmbeddings() for i in xrange(0, len(data) / 2): v = numpy.dot(embeddings[i], embeddings[i + len(data) / 2]) self.assertTrue(v < -1)
def getModel(inpSize, filterWidth) : ls = MS.GradientDescent(lr = 0.5) cost = MC.NegativeLogLikelihood() pooler = MCONV.MaxPooling2D(1, 2) i = ML.Input(inpSize, name = 'inp') ichan = MCONV.InputChanneler(1, inpSize, name = 'inpChan') c1 = MCONV.Convolution2D( nbFilters = 5, filterHeight = 1, filterWidth = filterWidth, activation = MA.ReLU(), pooler = pooler, name = "conv1" ) c2 = MCONV.Convolution2D( nbFilters = 10, filterHeight = 1, filterWidth = filterWidth, activation = MA.ReLU(), pooler = pooler, name = "conv2" ) f = MCONV.Flatten(name = "flat") h = ML.Hidden(5, activation = MA.ReLU(), decorators = [], regularizations = [ ], name = "hid" ) o = ML.SoftmaxClassifier(2, decorators = [], learningScenario = ls, costObject = cost, name = "out", regularizations = [ ] ) model = i > ichan > c1 > c2 > f > h > o return model
def test_ae(self): data = [] for i in xrange(8): zeros = numpy.zeros(8) zeros[i] = 1 data.append(zeros) ls = MS.GradientDescent(lr=0.1) cost = MC.MeanSquaredError() i = ML.Input(8, name='inp') h = ML.Hidden(3, activation=MA.ReLU(), name="hid") o = ML.Regression(8, activation=MA.ReLU(), learningScenario=ls, costObject=cost, name="out") ae = i > h > o miniBatchSize = 2 for e in xrange(2000): for i in xrange(0, len(data), miniBatchSize): ae.train(o, inp=data[i:i + miniBatchSize], targets=data[i:i + miniBatchSize]) res = ae.propagate(o, inp=data)["outputs"] for i in xrange(len(res)): self.assertEqual(numpy.argmax(data[i]), numpy.argmax(res[i]))
def test_save_load_64h(self): import os import Mariana.network as MN ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() i = ML.Input(2, 'inp') o = ML.SoftmaxClassifier(nbClasses=2, cost=cost, learningScenari=[ls], name="out") prev = i for i in xrange(64): h = ML.Hidden(size=10, activation=MA.ReLU(), name="Hidden_%s" % i) prev > h prev = h mlp = prev > o mlp.init() mlp.save("test_save") mlp2 = MN.loadModel("test_save.mar") mlp2.init() v1 = mlp["out"].propagate["test"]({ "inp.inputs": self.xor_ins })["out.propagate.test"] v2 = mlp2["out"].propagate["test"]({ "inp.inputs": self.xor_ins })["out.propagate.test"] self.assertTrue((v1 == v2).all()) os.remove('test_save.mar')
def getModel(inpSize, filterWidth): ls = MS.GradientDescent(lr=0.5) cost = MC.NegativeLogLikelihood() i = ML.Input((1, 1, inpSize), name='inp') c1 = MCONV.Convolution2D(numFilters=5, filterHeight=1, filterWidth=filterWidth, activation=MA.ReLU(), name="conv1") pool1 = MSAMP.MaxPooling2D(poolHeight=1, poolWidth=2, name="pool1") c2 = MCONV.Convolution2D(numFilters=10, filterHeight=1, filterWidth=filterWidth, activation=MA.ReLU(), name="conv2") pool2 = MSAMP.MaxPooling2D(poolHeight=1, poolWidth=2, name="pool2") h = ML.Hidden(5, activation=MA.ReLU(), name="hid") o = ML.SoftmaxClassifier(nbClasses=2, cost=cost, learningScenari=[ls], name="out") model = i > c1 > pool1 > c2 > pool2 > h > o model.init() return model
def test_embedding(self): """the first 3 and the last 3 should be diametrically opposed""" data = [[0], [1], [2], [3], [4], [5]] targets = [0, 0, 0, 1, 1, 1] ls = MS.GradientDescent(lr=0.5) cost = MC.NegativeLogLikelihood() inp = ML.Input(1, 'inp') emb = ML.Embedding(nbDimensions=2, dictSize=len(data), learningScenari=[ls], name="emb") o = ML.SoftmaxClassifier(2, learningScenari=[MS.Fixed()], cost=cost, name="out") net = inp > emb > o net.init() miniBatchSize = 2 for i in xrange(2000): for i in xrange(0, len(data), miniBatchSize): net["out"].train({ "inp.inputs": data[i:i + miniBatchSize], "out.targets": targets[i:i + miniBatchSize] })["out.drive.train"] embeddings = emb.getP("embeddings").getValue() for i in xrange(0, len(data) / 2): v = numpy.dot(embeddings[i], embeddings[i + len(data) / 2]) self.assertTrue(v < -1)
def ae1(data): '''Using a regression layer. This layer needs an explicit target''' miniBatchSize = 2 ls = MS.GradientDescent(lr=0.1) cost = MC.MeanSquaredError() i = ML.Input(8, name='inp') h = ML.Hidden(3, activation=MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], name="hid") o = ML.Regression( 8, activation=MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], learningScenario=ls, costObject=cost, name="out") ae = i > h > o for e in xrange(1000): for i in xrange(0, len(data), miniBatchSize): ae.train(o, inp=data[i:i + miniBatchSize], targets=data[i:i + miniBatchSize]) return ae, o
def test_concatenation(self): ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() inp = ML.Input(2, 'inp') h1 = ML.Hidden(5, activation=MA.Tanh(), name="h1") h2 = ML.Hidden(5, activation=MA.Tanh(), name="h2") o = ML.SoftmaxClassifier(nbClasses=2, cost=cost, learningScenari=[ls], name="out") inp > h1 inp > h2 c = ML.C([h1, h2], name="concat") mlp = c > o mlp.init() self.assertEqual(c.getIntrinsicShape()[0], h1.getIntrinsicShape()[0] + h2.getIntrinsicShape()[0]) for i in xrange(10000): ii = i % len(self.xor_ins) miniBatch = [self.xor_ins[ii]] targets = [self.xor_outs[ii]] mlp["out"].train({ "inp.inputs": miniBatch, "out.targets": targets })["out.drive.train"] for i in xrange(len(self.xor_ins)): self.assertEqual( mlp["out"].predict["test"]({ "inp.inputs": [self.xor_ins[i]] })["out.predict.test"], self.xor_outs[i])
def ae2(data): """This one uses an Autoencode layer. This layer is a part of the graph and does not need a specific traget""" miniBatchSize = 1 ls = MS.GradientDescent(lr=0.1) cost = MC.MeanSquaredError() i = ML.Input(8, name='inp') h = ML.Hidden(3, activation=MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], name="hid") o = ML.Autoencode( i.name, activation=MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], learningScenario=ls, costObject=cost, name="out") ae = i > h > o # ae.init() # o.train.printGraph() for e in xrange(2000): for i in xrange(0, len(data), miniBatchSize): ae.train(o, inp=data[i:i + miniBatchSize]) return ae, o
def test_composite(self): ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() inp = ML.Input(2, 'inp') h1 = ML.Hidden(5, activation=MA.Tanh(), name="h1") h2 = ML.Hidden(5, activation=MA.Tanh(), name="h2") o = ML.SoftmaxClassifier(2, learningScenario=ls, costObject=cost, name="out") c = ML.Composite(name="Comp") inp > h1 > c inp > h2 > c mlp = c > o for i in xrange(10000): ii = i % len(self.xor_ins) mlp.train(o, inp=[self.xor_ins[ii]], targets=[self.xor_outs[ii]]) self.assertEqual(mlp.predict(o, inp=[self.xor_ins[0]])["class"], 0) self.assertEqual(mlp.predict(o, inp=[self.xor_ins[1]])["class"], 1) self.assertEqual(mlp.predict(o, inp=[self.xor_ins[2]])["class"], 1) self.assertEqual(mlp.predict(o, inp=[self.xor_ins[3]])["class"], 0)
def test_ae(self) : data = [] for i in xrange(8) : zeros = numpy.zeros(8) zeros[i] = 1 data.append(zeros) ls = MS.GradientDescent(lr = 0.1) cost = MC.MeanSquaredError() i = ML.Input(8, name = 'inp') h = ML.Hidden(3, activation = MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], name = "hid") o = ML.Autoencode(targetLayerName = "inp", activation = MA.ReLU(), initializations=[MI.SmallUniformWeights(), MI.ZeroBias()], learningScenario = ls, costObject = cost, name = "out" ) ae = i > h > o miniBatchSize = 1 for e in xrange(2000) : for i in xrange(0, len(data), miniBatchSize) : ae.train(o, inp = data[i:i+miniBatchSize]) res = ae.propagate(o, inp = data)["outputs"] for i in xrange(len(res)) : self.assertEqual( numpy.argmax(data[i]), numpy.argmax(res[i]))
def getMLP(self, nbInputs=2, nbClasses=2): ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() i = ML.Input(nbInputs, 'inp') h = ML.Hidden(size=6, activation=MA.ReLU(), name="Hidden_0.500705866892") o = ML.SoftmaxClassifier(nbClasses=nbClasses, cost=cost, learningScenari=[ls], name="out") mlp = i > h > o mlp.init() return mlp
def test_ae_reg(self): powerOf2 = 3 nbUnits = 2**powerOf2 data = [] for i in xrange(nbUnits): zeros = numpy.zeros(nbUnits) zeros[i] = 1 data.append(zeros) ls = MS.GradientDescent(lr=0.1) cost = MC.MeanSquaredError() i = ML.Input(nbUnits, name='inp') h = ML.Hidden(powerOf2, activation=MA.ReLU(), initializations=[ MI.Uniform('W', small=True), MI.SingleValue('b', 0) ], name="hid") o = ML.Regression(nbUnits, activation=MA.ReLU(), initializations=[ MI.Uniform('W', small=True), MI.SingleValue('b', 0) ], learningScenari=[ls], cost=cost, name="out") ae = i > h > o ae.init() miniBatchSize = 1 for e in xrange(2000): for i in xrange(0, len(data), miniBatchSize): miniBatch = data[i:i + miniBatchSize] ae["out"].train({ "inp.inputs": miniBatch, "out.targets": miniBatch })["out.drive.train"] res = ae["out"].propagate["test"]({ "inp.inputs": data })["out.propagate.test"] for i in xrange(len(res)): self.assertEqual(numpy.argmax(data[i]), numpy.argmax(res[i]))
def trainMLP_xor(self) : ls = MS.GradientDescent(lr = 0.1) cost = MC.NegativeLogLikelihood() i = ML.Input(2, 'inp') h = ML.Hidden(10, activation = MA.ReLU(), name = "Hidden_0.500705866892") o = ML.SoftmaxClassifier(2, learningScenario = ls, costObject = cost, name = "out") mlp = i > h > o self.xor_ins = numpy.array(self.xor_ins) self.xor_outs = numpy.array(self.xor_outs) for i in xrange(1000) : mlp.train(o, inp = self.xor_ins, targets = self.xor_outs ) return mlp
def test_merge(self): ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() inp1 = ML.Input(1, 'inp1') inp2 = ML.Input(1, 'inp2') merge = ML.M((inp1 + inp2) / 3 * 10 - 1, name="merge") inp1 > merge mdl = inp2 > merge mdl.init() self.assertEqual(merge.getIntrinsicShape(), inp1.getIntrinsicShape()) v = mdl["merge"].propagate["test"]({ "inp1.inputs": [[1]], "inp2.inputs": [[8]] })["merge.propagate.test"] self.assertEqual(v, 29)
def trainMLP_xor(self): ls = MS.GradientDescent(lr=0.1) cost = MC.NegativeLogLikelihood() i = ML.Input(2, 'inp') h = ML.Hidden(4, activation=MA.Tanh(), decorators=[dec.GlorotTanhInit()], regularizations=[MR.L1(0), MR.L2(0)]) o = ML.SoftmaxClassifier(2, learningScenario=ls, costObject=cost, name="out") mlp = i > h > o self.xor_ins = numpy.array(self.xor_ins) self.xor_outs = numpy.array(self.xor_outs) for i in xrange(1000): ii = i % len(self.xor_ins) mlp.train(o, inp=[self.xor_ins[ii]], targets=[self.xor_outs[ii]]) return mlp
But Mariana style. This version uses a trainer/dataset mapper setup: * automatically saves the best model for each set (train, test, validation) * automatically saves the model if the training halts because of an error or if the process is killed * saves a log if the process dies unexpectedly * training results and hyper parameters values are recorded to a file * allows you to define custom stop criteria * training info is printed at each epoch, including best scores and at which epoch they were achieved """ if __name__ == "__main__": # Let's define the network ls = MS.GradientDescent(lr=0.01) cost = MC.NegativeLogLikelihood() i = ML.Input(28 * 28, name='inp') h = ML.Hidden(500, activation=MA.Tanh(), decorators=[MD.GlorotTanhInit()], regularizations=[MR.L1(0), MR.L2(0.0001)], name="hid") o = ML.SoftmaxClassifier(10, learningScenario=ls, costObject=cost, name="out", regularizations=[MR.L1(0), MR.L2(0.0001)]) mlp = i > h > o mlp.saveDOT("mnist_mlp") mlp.saveHTML("mnist_mlp") # And then map sets to the inputs and outputs of our network train_set, validation_set, test_set = load_mnist() trainData = MDM.Series(images=train_set[0], numbers=train_set[1]) trainMaps = MDM.DatasetMapper()
def test_multiout_fctmixin(self): i = ML.Input(1, name='inp') o1 = ML.Autoencode(targetLayer=i, activation=MA.Tanh(), learningScenari=[MS.GradientDescent(lr=0.1)], cost=MC.MeanSquaredError(), name="out1") o2 = ML.Regression(1, activation=MA.Tanh(), learningScenari=[MS.GradientDescent(lr=0.2)], cost=MC.MeanSquaredError(), name="out2") i > o1 ae = i > o2 ae.init() preOut1 = ae["out1"].test({"inp.inputs": [[1]]})["out1.drive.test"] preOut2 = ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"] ae["out1"].train({"inp.inputs": [[1]]})["out1.drive.train"] self.assertTrue( preOut1 > ae["out1"].test({"inp.inputs": [[1]]})["out1.drive.test"] ) self.assertTrue(preOut2 == ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"]) preOut1 = ae["out1"].test({"inp.inputs": [[1]]})["out1.drive.test"] preOut2 = ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"] ae["out2"].train({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.train"] self.assertTrue(preOut1 == ae["out1"].test({"inp.inputs": [[1]]}) ["out1.drive.test"]) self.assertTrue(preOut2 > ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"]) preOut1 = ae["out1"].test({"inp.inputs": [[1]]})["out1.drive.test"] preOut2 = ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"] fct = ae["out1"].train + ae["out2"].train + ae["inp"].propagate["train"] ret = fct({"inp.inputs": [[1]], "out2.targets": [[1]]}) self.assertEqual(len(ret), 3) self.assertTrue( preOut1 > ae["out1"].test({"inp.inputs": [[1]]})["out1.drive.test"] ) self.assertTrue(preOut2 > ae["out2"].test({ "inp.inputs": [[1]], "out2.targets": [[1]] })["out2.drive.test"])
#return model def train(self, inputs, targets): #because of the channeler there is no need to reshape the data besfore passing them to the conv layer return self.model.train("out", inp=inputs, targets=targets) def test(self, inputs, targets): return self.model.test("out", inp=inputs, targets=targets) def saveHTML(self, name): return self.model.saveHTML(name) if __name__ == "__main__": ls = MS.GradientDescent(lr=1e-3) cost = MC.NegativeLogLikelihood() maxEpochs = 200 miniBatchSize = 10 model = ConvWithChanneler(ls, cost) model.saveHTML('cnn_catdog') datafile = "small_set" train_set = load_data(datafile) #shuffling the dataset indices = [i for i in xrange(len(train_set[0]))] numpy.random.shuffle(indices) train_set = (train_set[0][indices], train_set[1][indices])