level =0.95 cl = int(level*100) sm=3 histn=3 alpha =0.5 ########### r dl and beta ### QUBIC alone clf() e=mcmc.matrixplot(chain_E_r_dl_b,['betadust','dldust_80_353','r'], 'pink', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) a=mcmc.matrixplot(chain_A_r_dl_b,['betadust','dldust_80_353','r'], 'black', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) b=mcmc.matrixplot(chain_B_r_dl_b,['betadust','dldust_80_353','r'], 'brown', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) legA = '150x2 : r < {0:5.3f} (95% CL)'.format(upperlimit(chain_A_r_dl_b,'r')) legB = '150+220 : r < {0:5.3f} (95% CL)'.format(upperlimit(chain_B_r_dl_b,'r')) legE = '220x2: r < {0:5.3f} (95% CL)'.format(upperlimit(chain_E_r_dl_b,'r')) legend([a,b,e],[legA, legB, legE], frameon=False, title='QUBIC 2 years ' +site) savefig('limits_r_beta_dl_qubicalone_'+site+'.png', transparent=True) ### QUBIC + Planck clf() f=mcmc.matrixplot(chain_F_r_dl_b,['betadust','dldust_80_353','r'], 'green', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) c=mcmc.matrixplot(chain_C_r_dl_b,['betadust','dldust_80_353','r'], 'blue', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) d=mcmc.matrixplot(chain_D_r_dl_b,['betadust','dldust_80_353','r'], 'red', sm, limits=[[1.4,2],[12,14.5],[0,0.2]], alpha=alpha,histn=histn, truevals = [truebeta, truedl, truer]) legC = '150x2+353: r < {0:5.3f} (95% CL)'.format(upperlimit(chain_C_r_dl_b,'r')) legD = '150+220+353: r < {0:5.3f} (95% CL)'.format(upperlimit(chain_D_r_dl_b,'r'))
clf() plot(lya['om_ol'],lya['rssqrtomh2'],'k,') ylim(0,100) clf() plot(bao['om_ol'],bao['rssqrtomh2'],'k,') ylim(0,100) reload(mcmc) clf() vars=['om_ol','rssqrtomh2'] limits=[[0.,3],[0,100]] doit=[True,True] a0=mcmc.matrixplot(bao,vars,'yellow',8,limits=limits,doit=doit) a1=mcmc.matrixplot(lya,vars,'purple',4,limits=limits,doit=doit) a2=mcmc.matrixplot(lya_bao,vars,'blue',4,limits=limits,doit=doit) subplot(3,3,3) axis('off') legend([a0,a1,a2],['BAO Gal','BAO Lya','All BAO (LRG+Lya)'],title=model) reload(mcmc) clf() vars=['omega_M_0','omega_lambda_0','w','h'] limits=[[0.,0.5],[-0.5,2],[-2,0],[0.,1.5]] doit=[True,True,False,True] a0=mcmc.matrixplot(bao,vars,'yellow',8,limits=limits,doit=doit) a1=mcmc.matrixplot(lya,vars,'purple',4,limits=limits,doit=doit)
######################## OwCDM ################################ model='owcdm' lya=mcmc.readchains(rep+model+'-'+'LyaDR11_Halone'+ext,add_extra=True) bao=mcmc.readchains(rep+model+'-'+'BAO'+ext,add_extra=True) lya_bao=mcmc.readchains(rep+model+'-'+'LyaDR11_Halone+BAO'+ext,add_extra=True) ################################################### reload(mcmc) clf() vars=['omega_M_0', 'omega_lambda_0','c_H0rs'] limits=[[0.,0.5],[0,1.2],[25,35]] doit=[True,True,True] a0=mcmc.matrixplot(bao,vars,'yellow',8,limits=limits,doit=doit) a1=mcmc.matrixplot(lya,vars,'purple',4,limits=limits,doit=doit) a2=mcmc.matrixplot(lya_bao,vars,'blue',4,limits=limits,doit=doit) subplot(3,3,3) axis('off') legend([a0,a1,a2],['BAO Gal','BAO Lya','All BAO (LRG+Lya)'],title=model) #### run in a shell xterm -e python ~/Python/Boss/McMc/mcmc_launcher.py olambdacdm BAO & xterm -e python ~/Python/Boss/McMc/mcmc_launcher.py olambdacdm LyaDR11_Halone+BAO &
plot(lll,functsum(lll,np.array([res[0],0])),'b--') plot(lll,functsum(lll,np.array([0,res[1]])),'b:') plot(lll,functsum(lll,res2),'r',label='Fit') plot(lll,functsum(lll,np.array([res2[0],0])),'r--') plot(lll,functsum(lll,np.array([0,res2[1]])),'r:') xlabel('$\ell$') ylabel('$\ell (\ell+1) C_\ell /2\pi$') legend(loc='upper left') savefig('newfit_bicep2.png') from McMc import mcmc clf() thechain = {'r':chains[:,0],'A_l':chains[:,1]} thechain2 = {'r':chains2[:,0],'A_l':chains2[:,1]} a0=mcmc.matrixplot(thechain2,['r','A_l'],'blue',4,limits=[[0,0.4],[-0.5,3.5]]) a1=mcmc.matrixplot(thechain,['r','A_l'],'red',4,limits=[[0,0.4],[-0.5,3.5]]) subplot(2,2,2) axis('off') legend([a1,a0],['BICEP2 Error Bars r = {0:.3f} +/- {1:.3f} <=> {2:.1f}$\sigma$'.format(res[0],err[0],res[0]/err[0]), 'Knox Approx. Error Bars r = {0:.3f} +/- {1:.3f} <=> {2:.1f}$\sigma$'.format(res2[0],err2[0],res2[0]/err2[0])]) savefig('matrixplot_bicep2.png') ####### Fit with Camb models H0 = 67.04 omegab = 0.022032 omegac = 0.12038 h2 = (H0/100.)**2 scalar_amp = np.exp(3.098)/1.E10
########### r dl and beta figure(0) sm=3 histn=3 alpha =0.5 nbins=100 from scipy.ndimage import gaussian_filter1d bla = np.histogram(chain_nofg_r['r'],bins=nbins,normed=True) xhist=(bla[1][0:nbins]+bla[1][1:nbins+1])/2 ss=np.std(chain_nofg_r['r']) yhist=gaussian_filter1d(bla[0],ss/histn/(xhist[1]-xhist[0]), mode='nearest') plot(xhist,yhist/max(yhist)) bla=mcmc.matrixplot(chain_B_r_dl_b,['betadust','r'], 'green', sm, limits=[[truebeta*0.95, truebeta*1.05],[0,0.05]], alpha=alpha,histn=histn, truevals = [truebeta, truer]) ### Au final clf() #c=mcmc.matrixplot(chain_C_r_dl_b,['betadust','r'], 'black', sm, limits=[[truebeta*0.95, truebeta*1.05],[0,0.05]], alpha=alpha,histn=histn, truevals = [truebeta, truer]) b=mcmc.matrixplot(chain_B_r_dl_b,['betadust','r'], 'blue', sm, limits=[[truebeta*0.95, truebeta*1.1],[0,0.07]], alpha=alpha,histn=histn, truevals = [truebeta, truer]) d=mcmc.matrixplot(chain_D_r_dl_b,['betadust','r'], 'red', sm, limits=[[truebeta*0.95, truebeta*1.1],[0,0.07]], alpha=alpha,histn=histn, truevals = [truebeta, truer]) subplot(2,2,4) noFG = plot(xhist,yhist/max(yhist), color='green', label='toto') subplot(2,2,2) #legC = '150x2+353 : r < {0:5.2f} (95% CL)'.format(upperlimit(chain_C_r_dl_b,'r')) legB = '150+220 : r < {0:5.2f} (95% CL)'.format(upperlimit(chain_B_r_dl_b,'r')) legD = '150+220+353: r < {0:5.2f} (95% CL)'.format(upperlimit(chain_D_r_dl_b,'r')) legnoFG = 'No Foregrounds: r < {0:5.2f} (95% CL)'.format(upperlimit(chain_nofg_r,'r')) legend([b, d, bla],[legB, legD, legnoFG], frameon=False, title='QUBIC 2 years '+config+site)
######################## Ok ################################ model='olambdacdm' lya_hp1_obh2p1=mcmc.readchains(rep+model+'-'+'LyaDR11_HPlanck1s_obh2Planck1s'+ext,add_extra=True) lya_hr2_obh2p1=mcmc.readchains(rep+model+'-'+'LyaDR11_HRiess2s_obh2Planck1s'+ext,add_extra=True) lya_hrp_obh2p1=mcmc.readchains(rep+model+'-'+'LyaDR11_HRiessPlanck_obh2Planck1s'+ext,add_extra=True) bao_hrp_obh2p1=mcmc.readchains(rep+model+'-'+'BAO_HRiessPlanck_obh2Planck1s'+ext,add_extra=True) lya_bao_hrp_obh2p1=mcmc.readchains(rep+model+'-'+'LyaDR11_BAO_HRiessPlanck_obh2Planck1s'+ext,add_extra=True) lya_bao=mcmc.readchains(rep+model+'-'+'LyaDR11+BAO'+ext,add_extra=True) ################################################### reload(mcmc) clf() limits=[[0,1],[0,1.5],[0.6,0.8],[0.021,0.023]] vars=['omega_M_0','omega_lambda_0','h','obh2'] a2=mcmc.matrixplot(lya_hrp_obh2p1,vars,'red',8,limits=limits,alpha=0.5) a0=mcmc.matrixplot(lya_hp1_obh2p1,vars,'blue',8,limits=limits,alpha=0.5) a1=mcmc.matrixplot(lya_hr1_obh2p1,vars,'green',8,limits=limits,alpha=0.5) subplot(2,2,2) axis('off') legend([a0,a1,a2],['BAO Lyman-alpha + h Planck (1s) + Obh2 Planck (1s)', 'BAO Lyman-alpha + h Riess (1s) + Obh2 Planck (1s)', 'BAO Lyman-alpha + h Riess/Planck + Obh2 Planck (1s)'],title=model) reload(mcmc) clf() limits=[[0.,1],[0,1.5]] vars=['omega_M_0','omega_lambda_0'] a2=mcmc.matrixplot(lya_hrp_obh2p1,vars,'blue',8,limits=limits,alpha=0.5) subplot(len(vars),len(vars),len(vars)) axis('off')
########### r dl and beta sm=4 histn=100 alpha =0.5 nbins=100 from scipy.ndimage import gaussian_filter1d bla = np.histogram(chain_nofg_r['r'],bins=nbins,normed=True) xhist=(bla[1][0:nbins]+bla[1][1:nbins+1])/2 ss=np.std(chain_nofg_r['r']) yhist=gaussian_filter1d(bla[0],20*ss/histn/(xhist[1]-xhist[0]), mode='nearest') plot(xhist,yhist/max(yhist)) thelimits = [[truebeta*0.98, truebeta*1.05],[0,0.03]] bla=mcmc.matrixplot(chain_B_r_dl_b,['betadust','r'], 'green', sm, limits=thelimits, alpha=alpha,nbins=histn)#, truevals = [truebeta, truer]) ### Au final clf() #c=mcmc.matrixplot(chain_C_r_dl_b,['betadust','r'], 'black', sm, limits=[[truebeta*0.95, truebeta*1.05],[0,0.05]], alpha=alpha,histn=histn, truevals = [truebeta, truer]) b=mcmc.matrixplot(chain_B_r_dl_b,['betadust','r'], 'blue', sm, limits=thelimits, alpha=alpha,nbins=histn)#, truevals = [truebeta, truer]) d=mcmc.matrixplot(chain_D_r_dl_b,['betadust','r'], 'red', sm, limits=thelimits, alpha=alpha,nbins=histn)#, truevals = [truebeta, truer]) subplot(2,2,4) noFG = plot(xhist,yhist/max(yhist), color='green', label='toto') #subplot(2,2,2) #legC = '150x2+353 : r < {0:5.2f} (95% CL)'.format(upperlimit(chain_C_r_dl_b,'r')) ul_B = upperlimit(chain_B_r_dl_b,'r', level =0.68) legB = '150+220 : $\sigma_r$ = {0:5.3f}'.format(ul_B) ul_D = upperlimit(chain_D_r_dl_b,'r', level =0.68)