def test_empty(self): in_channels = 2 coords, feats, labels = data_loader(in_channels, batch_size=1) feats = feats.double() feats.requires_grad_() input = SparseTensor(feats, coords) use_feat = torch.BoolTensor(len(input)) use_feat.zero_() pruning = MinkowskiPruning() output = pruning(input, use_feat) print(input) print(use_feat) print(output) # Check backward fn = MinkowskiPruningFunction() self.assertTrue( gradcheck( fn, ( input.F, use_feat, input.coordinate_map_key, output.coordinate_map_key, input.coordinate_manager, ), ))
def test_device(self): in_channels, D = 2, 2 device = torch.device("cuda") coords, feats, labels = data_loader(in_channels, batch_size=1) feats = feats.double() feats.requires_grad_() use_feat = (torch.rand(feats.size(0)) < 0.5).to(device) pruning = MinkowskiPruning() input = SparseTensor(feats, coords, device=device) output = pruning(input, use_feat) print(input) print(output) fn = MinkowskiPruningFunction() self.assertTrue( gradcheck( fn, ( input.F, use_feat, input.coordinate_map_key, output.coordinate_map_key, input.coordinate_manager, ), ))
def test_pruning(self): in_channels, D = 2, 2 coords, feats, labels = data_loader(in_channels) feats = feats.double() feats.requires_grad_() input = SparseTensor(feats, coords=coords) use_feat = torch.rand(feats.size(0)) < 0.5 pruning = MinkowskiPruning(D) output = pruning(input, use_feat) print(use_feat, output) # Check backward fn = MinkowskiPruningFunction() self.assertTrue( gradcheck(fn, (input.F, use_feat, input.coords_key, output.coords_key, input.coords_man))) device = torch.device('cuda') with torch.cuda.device(0): input = input.to(device) output = pruning(input, use_feat) print(output) self.assertTrue( gradcheck(fn, (input.F, use_feat, input.coords_key, output.coords_key, input.coords_man)))
def test_with_convtr(self): channels, D = [2, 3, 4], 2 coords, feats, labels = data_loader(channels[0], batch_size=1) feats = feats.double() feats.requires_grad_() # Create a sparse tensor with large tensor strides for upsampling start_tensor_stride = 4 input = SparseTensor( feats, coords * start_tensor_stride, tensor_stride=start_tensor_stride, ) conv_tr1 = MinkowskiConvolutionTranspose( channels[0], channels[1], kernel_size=3, stride=2, generate_new_coords=True, dimension=D, ).double() conv1 = MinkowskiConvolution(channels[1], channels[1], kernel_size=3, dimension=D).double() conv_tr2 = MinkowskiConvolutionTranspose( channels[1], channels[2], kernel_size=3, stride=2, generate_new_coords=True, dimension=D, ).double() conv2 = MinkowskiConvolution(channels[2], channels[2], kernel_size=3, dimension=D).double() pruning = MinkowskiPruning() out1 = conv_tr1(input) self.assertTrue(torch.prod(torch.abs(out1.F) > 0).item() == 1) out1 = conv1(out1) use_feat = torch.rand(len(out1)) < 0.5 out1 = pruning(out1, use_feat) out2 = conv_tr2(out1) self.assertTrue(torch.prod(torch.abs(out2.F) > 0).item() == 1) use_feat = torch.rand(len(out2)) < 0.5 out2 = pruning(out2, use_feat) out2 = conv2(out2) print(out2) out2.F.sum().backward() # Check gradient flow print(input.F.grad)
def test_device(self): in_channels = 2 coords, feats, labels = data_loader(in_channels, batch_size=1) feats = feats.double() feats.requires_grad_() input = SparseTensor(feats, coords, device="cuda") use_feat = torch.rand(feats.size(0)) < 0.5 pruning = MinkowskiPruning() output = pruning(input, use_feat.cuda()) print(input) print(use_feat) print(output)