test_images = load_images(image_list) image_list_gt = glob.glob('gt_syn_test/*.png') test_images_gt = load_images(image_list_gt) # model checkpoints model = Model().cuda() # model.load_state_dict(torch.load(r'models\01-27-2021_12-51-33-n17183-e20-bs4-lr0.0001\weights.epoch8_model.pth')) # optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # epoch = checkpoint['epoch'] # loss = checkpoint['loss'] optimizer = torch.optim.Adam(model.parameters(), 0.0001) checkpoint = torch.load( r'models\01-27-2021_12-51-33-n17183-e20-bs4-lr0.0001\weights.epoch8_model.pth' ) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss'] model.eval() predictions = predict(model, test_images) show_images(test_images) show_depth_colormap(test_images_gt) show_depth_colormap(predictions) i = 1 # save the prediction in numpy file for pred in predictions: plt.imsave("gt_syn_test/depth_image_{0}.jpg".format(i), pred, cmap='Greys')
dataiter = iter(train_loader) images = dataiter.next() print("\n Time taken to load Images: %s " % (time.time() - start_time)) print("\n Test Dataset Shape: {shape}".format(shape=np.shape(depth_dataset))) # ### Importing the Model from Mobile_model import Model model = Model().cuda() model = nn.DataParallel(model) # Import the Pre-trained Model model.load_state_dict(torch.load(pretrained_path)) print("\n Loaded MobileNet U-Net Weights successfully\n") model.eval() # ### Model Variables (state_dict) # print("\n\nModel's state_dict:\n\n") # for param_tensor in model.state_dict(): # print(param_tensor, "\t", model.state_dict()[param_tensor].size()) # ## Generating Depth Images start_time = time.time() for i, sample_batched1 in enumerate(train_loader):
help='Image size of network input') parser.add_argument('--data_dir', default='comarision_datasets\input', type=str, help='Data path') parser.add_argument( '--result_dir', default='demo_results', type=str, help='Directory for saving results, default: demo_results') parser.add_argument('--gpu_id', default=0, type=int, help='GPU id, default:0') args = parser.parse_args() if not os.path.exists(args.result_dir): os.makedirs(args.result_dir) gpu_id = args.gpu_id torch.cuda.device(gpu_id) net = Model().cuda() net.load_state_dict(torch.load('weights_model.pth')) net.eval() print('Begin to test ...') with torch.no_grad(): demo(net, args) print('Finished!')