help="fold in [0,1,2,3,4]") (options, args) = parser.parse_args() fold = options.fold batch_size = options.batch_size mu = options.mu epoch_num = 2000 sample_num_each_epoch = 500 patience = 25 best_epoch = 0 best_val_auc = 0.0 test_times = 20 if options.model_file == "": minet = MINet() minet = torch.nn.DataParallel(minet).cuda() else: print('not implemented') learning_rate = options.learning_rate optimizer = torch.optim.Adam([{ 'params': minet.parameters() }], lr=learning_rate) nn_loss_label = torch.nn.CrossEntropyLoss().cuda() loss = 0
(options, args) = parser.parse_args() fold = options.fold batch_size = options.batch_size mu = options.mu embed_len = 10 epoch_num = 2000 inst_num = 5 sample_num_each_epoch = 500 patience = 25 best_epoch = 0 best_val_auc = 0.0 test_times = 10 if options.model_file == "": minet = MINet(embed_len, inst_num) minet = torch.nn.DataParallel(minet).cuda() else: print('not implemented') learning_rate = options.learning_rate optimizer = torch.optim.Adam([{ 'params': minet.parameters() }], lr=learning_rate) nn_loss_label = torch.nn.CrossEntropyLoss().cuda() loss = 0