Example #1
0
def ImportAriesByScenario(scenarioName,
                          start_date,
                          end_date,
                          Area,
                          CorpID=['ALL']):
    from Model import BPXDatabase as bpxdb
    from Model import QueryFile as qf
    import pandas as pd

    #Create ODS and EDW objects
    Success = True
    Messages = []
    combined_df = pd.DataFrame()
    try:
        ODSobj = bpxdb.GetDBEnvironment('ProdODS', 'OVERRIDE')
        EDWobj = bpxdb.GetDBEnvironment('ProdEDW', 'OVERRIDE')

        scenario_query = qf.ScenarioQuery(scenarioName, CorpID, start_date,
                                          end_date)
        results = ODSobj.Query(scenario_query)

        #Extract APINumbers from the results and concatenate into an 'IN' sql clause
        corpid_list = []
        for result in results[0]:
            if not result['CorpID'] in corpid_list:
                corpid_list.append(result['CorpID'])

        if None in corpid_list:
            corpid_list.remove(None)

        key_query = qf.EDWKeyQueryFromCorpID(corpid_list, Area)
        key_results = EDWobj.Query(key_query)

        #Join the key_results to the Aries results
        combined_df = pd.merge(results[1],
                               key_results[1],
                               on='CorpID',
                               how='right')

    except Exception as ex:
        Messages.append('Error on Import from Aries. ' + str(ex))
        Success = False

    return combined_df, Success, Messages
Example #2
0
def GetWellandCorpID(WellName, CorpID):
    from Model import QueryFile as qf
    from Model import BPXDatabase as bpx

    #Check CorpID if Wellname is passed
    if not CorpID and WellName:
        CorpID_query = qf.EDWKeyQueryFromWellName([WellName])
        EDWObj = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE')
        res, res_df = EDWObj.Query(CorpID_query)

        if not res_df.empty:
            CorpID = res_df['CorpID'].values[0]

    #Check WellName if CorpID not passed
    if not WellName and CorpID:
        WellName_Query = qf.EDWKeyQueryFromCorpID([CorpID], '')
        EDWObj = bpx.GetDBEnvironment('ProdEDW', 'OVERRIDE')
        res, res_df = EDWObj.Query(WellName_Query)

        if not res_df.empty:
            WellName = res_df['WellName'].values[0]

    return WellName, CorpID
Example #3
0
def WriteLEFromTemplate(all_data_df,
                        InterpolationMethod,
                        LEName,
                        LE_Date,
                        Update_User,
                        IDCol='WellName'):
    from datetime import datetime, date
    import pandas as pd
    from Model import QueryFile as qf
    from Model import BPXDatabase as bpx
    from Model import ImportUtility as i

    Success = True
    Messages = []
    results = []
    try:
        #Data Frame must be the same structure as the output from the 'Read From Excel Function
        #'CorpID', 'WellName', 'Wedge', 'Date', 'Gas', 'Oil', 'Water', 'OilNF', 'GasNF'

        wellname = ''
        if not Success:
            Messages.append(Message)

        if IDCol == 'CorpID':
            corpid_list = list(all_data_df['CorpID'].unique())
            corpid_query = qf.EDWKeyQueryFromCorpID(corpid_list)
            corpid_results, corpid_df = bpx.GetDBEnvironment(
                'ProdEDW', 'OVERRIDE').Query(corpid_query)
            well_list = list(corpid_df['WellName'].unique())

            well_query = 'CorpID == @corpid'
        else:
            well_list = list(all_data_df['WellName'].unique())
            well_query = 'WellName == @wellname'

        well_list = [i for i in well_list if i]

        for wellname in well_list:

            wellname, corpid = i.GetWellandCorpID(wellname, '')
            if not corpid:
                corpid = wellname

            data_df = all_data_df.query(well_query)

            row_count = 1
            if not data_df.empty:
                df_previous_row = (0, data_df.iloc[1])

                for idx, df_row in data_df.iterrows():
                    if InterpolationMethod == 'MonthlyRates':
                        if row_count == 1:
                            df_next_row = data_df.iloc[row_count]
                            results = InterpolateDailyRatesFromMonthlyRates(
                                CurrentMonthVal=df_row,
                                NextMonthVal=df_next_row,
                                GasProduction='Gas',
                                OilProduction='Oil')

                        elif row_count != data_df.shape[0] and row_count != 1:
                            df_next_row = data_df.iloc[row_count]
                            results = InterpolateDailyRatesFromMonthlyRates(
                                CurrentMonthVal=df_row,
                                NextMonthVal=df_next_row,
                                PreviousMonthVal=df_previous_row,
                                GasProduction='Gas',
                                OilProduction='Oil')

                        elif row_count == data_df.shape[0]:
                            results = InterpolateDailyRatesFromMonthlyRates(
                                CurrentMonthVal=df_row,
                                PreviousMonthVal=df_previous_row,
                                GasProduction='Gas',
                                OilProduction='Oil')

                    elif InterpolationMethod == 'MonthlyVolume':
                        if row_count == 1:
                            df_next_row = data_df.iloc[row_count]
                            results = InterpolateDailyRatesFromMonthlyVolumes(
                                CurrentMonthVal=df_row[1],
                                NextMonthVal=df_next_row)
                        else:
                            results = InterpolateDailyRatesFromMonthlyVolumes(
                                CurrentMonthVal=df_row[1],
                                PreviousMonthVal=df_previous_row[1])

                    elif InterpolationMethod == 'None':
                        results = ConvertNonInterpolatedResults(df_row)

                    Wedge, Message = i.GetWedgeData(corpid, True)
                    Success, Message = WriteInterpolatedLEToDB(
                        LEName, wellname, corpid, '', Wedge, LE_Date,
                        Update_User, results)
                    if not Success:
                        Messages.append(Message)

                    df_previous_row = df_row
                    row_count = row_count + 1

    except Exception as ex:
        Success = False
        Messages.append('Error during the writing of the LE from template. ' +
                        str(ex))

    return Success, Messages