def ci_cons(X, v, alpha_level, L, theta_l, theta_u, K, test="lr", corrected=True, verbose=False):
    arr = array_from_data(X, [v])

    fit_model = StationaryLogistic()
    fit_model.beta["x_0"] = None
    fit_model.confidence_cons(arr, "x_0", alpha_level, K, L, theta_l, theta_u, test, verbose)

    method = "conservative-%s" % test
    return fit_model.conf["x_0"][method]
Example #2
0
def ci_cons(X, v, alpha_level, L, theta_l, theta_u,
            K, test = 'lr', corrected = True, verbose = False):
    arr = array_from_data(X, [v])

    fit_model = StationaryLogistic()
    fit_model.beta['x_0'] = None
    fit_model.confidence_cons(arr, 'x_0', alpha_level, K,
                              L, theta_l, theta_u, test, verbose)

    method = 'conservative-%s' % test
    return fit_model.conf['x_0'][method]
def ci_cons(X, v, alpha_level, L, theta_l, theta_u,
            K, test = 'lr', corrected = True, verbose = False):
    arr = array_from_data(X, [v])

    fit_model = StationaryLogistic()
    fit_model.beta['x_0'] = None
    fit_model.confidence_cons(arr, 'x_0', alpha_level, K,
                              L, theta_l, theta_u, test, corrected,
                              verbose)

    method = 'conservative-%s' % test
    return fit_model.conf['x_0'][method]
def ci_cmle_wald(X, v, alpha_level):
    arr = array_from_data(X, [v])

    A = arr.as_dense()
    r = A.sum(1)
    c = A.sum(0)

    s_model = StationaryLogistic()
    s_model.beta["x_0"] = None
    fit_model = FixedMargins(s_model)
    arr.new_row_covariate("r", np.int)[:] = r
    arr.new_col_covariate("c", np.int)[:] = c
    fit_model.fit = fit_model.base_model.fit_conditional

    fit_model.confidence_wald(arr, alpha_level=alpha_level)

    return safe_ci(fit_model, "x_0", "wald")
def ci_cmle_boot(X, v, alpha_level):
    arr = array_from_data(X, [v])

    A = arr.as_dense()
    r = A.sum(1)
    c = A.sum(0)
    
    s_model = StationaryLogistic()
    s_model.beta['x_0'] = None
    fit_model = FixedMargins(s_model)
    arr.new_row_covariate('r', np.int)[:] = r
    arr.new_col_covariate('c', np.int)[:] = c
    fit_model.fit = fit_model.base_model.fit_conditional

    fit_model.confidence_boot(arr, alpha_level = alpha_level)

    return fit_model.conf['x_0']['pivotal']
def generate_data(case, theta, seed):
    # Advance random seed for parameter and covariate construction
    seed.next()

    case = params['case']
    alpha = beta = kappa = offset = 0
    conditional_sample = False
    if 'fixed_example' in case:
        # Load parameters and covariates
        with open(case['fixed_example'], 'r') as example_file:
            example = json.load(example_file)

            v = np.array(example['nu'])
            M, N = v.shape

            if 'alpha' in example:
                alpha = np.array(example['alpha']).reshape((M,1))
            if 'beta' in example:
                beta = np.array(example['beta']).reshape((1,N))
            if 'kappa' in example:
                kappa = example['kappa']
            if 'offset' in example:
                offset = example['offset']

            if ('r' in example) and ('c' in example):
                conditional_sample = True
                r = example['r']
                c = example['c']

    else:
        # Generate parameters and covariates
        M, N = case['M'], case['N']
        if 'alpha_min' in case:
            alpha = np.random.uniform(size = (M,1)) + case['alpha_min']
        if 'beta_min' in case:
            beta = np.random.uniform(size = (1,N)) + case['beta_min']
        if 'kappa' in case:
            kappa = case['kappa']
        if case['v_discrete']:
            v = np.sign(np.random.random(size = (M,N)) - 0.5) 
        elif case['v_uniform']:
            v = np.random.uniform(size = (M,N))
        elif case['v_normal']:
            v = np.random.normal(size = (M,N))
        if 'v_scale' in case:
            v *= case['v_scale']
        if 'v_loc' in case:
            v += case['v_loc']
        
        if ('r' in case) and ('c' in case):
            conditional_sample = True
            r = case['r']
            c = case['c']

    # Generate Bernoulli probabilities from logistic regression model
    logit_P = np.zeros((M,N)) + kappa
    logit_P += alpha
    logit_P += beta
    logit_P += theta * v
    logit_P += offset

    if conditional_sample:
        arr = Array(M, N)
        arr.new_edge_covariate('x_0')[:] = logit_P
        arr.new_row_covariate('r', dtype = np.int)[:] = r
        arr.new_col_covariate('c', dtype = np.int)[:] = c
        
        base_model = StationaryLogistic()
        base_model.beta['x_0'] = 1.0
        data_model = FixedMargins(base_model)

    while True:
        # Advance random seed for data generation
        seed.next()

        # Generate data for this trial
        if conditional_sample:
            X = data_model.generate(arr, coverage = 100.0)
        else:
            P = 1.0 / (1.0 + np.exp(-logit_P))
            X = np.random.random((M,N)) < P

        yield X, v
def fit_and_summarize(name, fit_model, use_covs):
    print name
    if use_covs:
        for cov_name in cov_names:
            fit_model.beta[cov_name] = None
    fit_model.fit(net, verbose=params['verbose'])
    print 'NLL: %.2f' % fit_model.nll(net)
    print 'kappa: %.2f' % fit_model.kappa
    if use_covs:
        for cov_name in cov_names:
            print '%s: %.2f' % (cov_name, fit_model.beta[cov_name])
    print '\n'


fit_and_summarize('Stationary', Stationary(), False)
fit_and_summarize('Stationary', StationaryLogistic(), True)
if params['offset_extremes']:
    print 'Detecting subnetworks associated with infinite parameter estimates.\n'
    net.offset_extremes()
    if params['plot']: net.show_offset('pub_date')
fit_and_summarize('Nonstationary', NonstationaryLogistic(), False)
fit_and_summarize('Nonstationary', NonstationaryLogistic(), True)

# Redisplay heatmap, ordered by estimated alphas from last fit, i.e.,
# NonstationaryLogistic with publication date difference covariates
# XX: Following plots are broken
#if params['plot']:
#    net.show_heatmap('alpha_out')
#    net.show_heatmap('alpha_in')

outfile = open('scratch.json', 'w')
    'plot_mse_beta': True
}

# Set random seed for reproducible output
np.random.seed(137)

# Report parameters for the run
print 'Parameters:'
for field in params:
    print '%s: %s' % (field, str(params[field]))

# Initialize full network
net = Network(params['N'])

# Generate covariates and associated coefficients
data_base_model = StationaryLogistic()
covariates = []
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    data_base_model.beta[name] = np.random.normal(0, params['beta_sd'])

    x_node = np.random.normal(0, 1, params['N'])

    def f_x(i_1, i_2):
        return abs(x_node[i_1] - x_node[i_2]) < params['x_diff_cutoff']

    net.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model = FixedMargins(data_base_model)
net.new_node_covariate_int('r')
    def f_x(i_1, i_2):
        return np.random.uniform(-np.sqrt(3), np.sqrt(3))

    arr.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model.match_kappa(arr, params['kappa_target'])

# Specify parameter of interest that  the confidence interval will try
# to capture
for c in params['covariates_of_interest']:
    theta_true = data_model.beta[c]
    print '%s theta_true: %.2f' % (c, theta_true)

# Setup fit model
if params['fit_method'] == 'conditional':
    fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    fit_model.generate = fit_model.generate_margins
    fit_model.fit = fit_model.fit_conditional
else:
    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None

# Test coverage
methods = []
if params['do_wald']:
    # contour expects x, y, z generated by meshgrid...
    CS = plt.contour(x, y, np.transpose(z), colors='k')
    plt.plot(theta_star_1, theta_star_2, 'b*', markersize=12)
    plt.plot(theta_opt_1, theta_opt_2, 'ro', markersize=12)
    # plt.clabel(CS, inline = 1, fontsize = 10, fmt = '%1.1f')
    plt.xlabel(r'$\theta_2$', fontsize=14)
    plt.ylabel(r'$\theta_1$', fontsize=14)

    return theta_opt_1, theta_opt_2


# Grid search for stationary and non-stationary fits
plt.subplot(142)
plt.title('Stationary')
grid_fit(StationaryLogistic(), lambda n, m: m.nll(n), profile=True)
plt.subplot(143)
plt.title('Nonstationary')
grid_fit(NonstationaryLogistic(),
         lambda n, m: m.nll(n),
         profile=True,
         pre_offset=True)

# Grid search for conditional fit
plt.subplot(144)
plt.title('Conditional')


def f_nll(n, m):
    P = m.edge_probabilities(n)
    w = P / (1.0 - P)
# Set random seed for reproducible output
np.random.seed(137)

# Report parameters for the run
print 'Parameters:'
for field in params:
    print '%s: %s' % (field, str(params[field]))

# Initialize political blogs network from file. The "value" covariate
# is the ground truth membership to the left-leaning (0) or
# right-leaning (1) class.
net = network_from_file_gml('data/polblogs/polblogs.gml', ['value'])
net.new_node_covariate_int('truth')[:] = net.node_covariates['value'][:]

# Initialize fitting model
fit_base_model = StationaryLogistic()
fit_model = Blockmodel(fit_base_model, params['fit_K'])
if params['fit_nonstationary']:
    n_fit_base_model = NonstationaryLogistic()
    n_fit_model = Blockmodel(n_fit_base_model, params['fit_K'])
net.new_node_covariate_int('z')
if params['blockmodel_fit_method'] == 'kl':
    fit_model.fit = fit_model.fit_kl
    n_fit_model.fit = n_fit_model.fit_kl

# Set up recording of results from experiment
s_results = Results(params['sub_sizes'], params['sub_sizes'],
                    params['num_reps'], 'Stationary fit')
add_array_stats(s_results)
def class_mismatch(n):
    truth = n.node_covariates['truth'][:]
Example #12
0
def display_cis(model):
    procedures = set()
    for par in model.conf:
        for procedure in model.conf[par]:
            procedures.add(procedure)
    for procedure in procedures:
        print '%s:' % procedure
        for par in model.conf:
            if not procedure in model.conf[par]: continue
            ci = model.conf[par][procedure]
            print ' %s: (%.2f, %.2f)' % (par, ci[0], ci[1])
    print

print 'Fitting stationary model'
s_model = StationaryLogistic()
for cov_name in cov_names:
    s_model.beta[cov_name] = None
s_model.fit(net)
print 'NLL: %.2f' % s_model.nll(net)
print 'kappa: %.2f' % s_model.kappa
for cov_name in cov_names:
    print '%s: %.2f' % (cov_name, s_model.beta[cov_name])
print
for rep in range(params['n_samples']):
    s_samples[rep,:,:] = s_model.generate(net)
s_model.confidence_boot(net, n_bootstrap = params['n_bootstrap'])
s_model.confidence_wald(net)
display_cis(s_model)

print 'Fitting conditional model'
Example #13
0
def do_experiment(params):
    if params['dump_fits'] and params['load_fits']:
        print 'Warning: simultaneously dumping and loading is a bad idea.'

    if params['dump_fits']:
        fits = []

    if params['load_fits']:
        with open(params['load_fits'], 'r') as fits_file:
            loaded_params_pick, loaded_fits = json.load(fits_file)

        loaded_params = dict([(k, unpick(v)) for (k, v) in loaded_params_pick])

        # Compare on parameters that control data generation and inference
        run_params = [
            'N', 'B', 'theta_sd', 'theta_fixed', 'alpha_unif_sd',
            'alpha_norm_sd', 'alpha_gamma_sd', 'cov_unif_sd', 'cov_norm_sd',
            'cov_disc_sd', 'kappa_target', 'pre_offset', 'post_fit',
            'fit_nonstationary', 'fit_method', 'num_reps', 'is_T', 'sampling',
            'sub_sizes_r', 'sub_sizes_c', 'random_seed'
        ]

        for p in run_params:
            if not np.all(loaded_params[p] == params[p]):
                print 'Warning: load mismatch on', p

    # Set random seed for reproducible output
    seed = Seed(params['random_seed'])

    # Initialize full network
    arr = Network(params['N'])

    # Generate node-level propensities to extend and receive edges
    if params['alpha_norm_sd'] > 0.0:
        alpha_norm(arr, params['alpha_norm_sd'])
    elif params['alpha_unif_sd'] > 0.0:
        alpha_unif(arr, params['alpha_unif_sd'])
    elif params['alpha_gamma_sd'] > 0.0:
        # Choosing location somewhat arbitrarily to give unit skewness
        alpha_gamma(arr, 4.0, params['alpha_gamma_sd'])
    else:
        alpha_zero(arr)

    # Generate covariates and associated coefficients
    data_model = NonstationaryLogistic()
    covariates = []
    for b in range(params['B']):
        name = 'x_%d' % b
        covariates.append(name)

        if name in params['theta_fixed']:
            data_model.beta[name] = params['theta_fixed'][name]
        else:
            data_model.beta[name] = np.random.normal(0, params['theta_sd'])

        if params['cov_unif_sd'] > 0.0:
            c = np.sqrt(12) / 2

            def f_x(i_1, i_2):
                return np.random.uniform(-c * params['cov_unif_sd'],
                                         c * params['cov_unif_sd'])
        elif params['cov_norm_sd'] > 0.0:

            def f_x(i_1, i_2):
                return np.random.normal(0, params['cov_norm_sd'])
        elif params['cov_disc_sd'] > 0.0:

            def f_x(i_1, i_2):
                return (params['cov_disc_sd'] *
                        (np.sign(np.random.random() - 0.5)))
        else:
            print 'Error: no covariate distribution specified.'
            sys.exit()

        arr.new_edge_covariate(name).from_binary_function_ind(f_x)

    # Generate large network, if necessary
    if not params['sampling'] == 'new':
        data_model.match_kappa(arr, params['kappa_target'])
        arr.generate(data_model)

    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None

    # Set up recording of results from experiment
    results = Results(params['sub_sizes_r'],
                      params['sub_sizes_c'],
                      params['num_reps'],
                      interactive=params['interactive'])
    add_array_stats(results)
    if params['plot_sig']:
        from scipy.stats import chi2
        crit = lambda dof: -0.5 * chi2.ppf(0.95, dof)

        umle_f = lambda n, f: f.nll(n, ignore_offset=True)
        umle_d = lambda n, d: d.nll(n, ignore_offset=True)
        umle_n = lambda n: NonstationaryLogistic().nll(n, ignore_offset=True)
        results.new('UMLE F-N', 'nm', lambda n, d, f: umle_f(n, f) - umle_n(n))
        results.new('UMLE F-D', 'nm',
                    lambda n, d, f: umle_f(n, f) - umle_d(n, d))

        cmle_a_f = lambda n, f: acnll(n.as_dense(),
                                      np.exp(f.edge_probabilities(n)))
        cmle_a_d = lambda n, d: acnll(n.as_dense(),
                                      np.exp(d.edge_probabilities(n)))
        cmle_a_n = lambda n: acnll(n.as_dense(), np.ones_like(n.as_dense()))
        results.new('CMLE-A F-N', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_n(n))
        results.new('CMLE-A F-D', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_d(n, d))

        cmle_is_f = lambda n, f: f.fit_conditional(n, evaluate=True, T=50)
        cmle_is_d = lambda n, d: d.fit_conditional(n, evaluate=True, T=50)
        cmle_is_n = lambda n: NonstationaryLogistic().fit_conditional(
            n, evaluate=True, T=50)
        results.new('CMLE-IS F-N', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_n(n))
        results.new('CMLE-IS F-D', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_d(n, d))

        c_cmle_f = lambda n, f: f.fit_c_conditional(n, evaluate=True)
        c_cmle_d = lambda n, d: d.fit_c_conditional(n, evaluate=True)
        c_cmle_n = lambda n: NonstationaryLogistic().fit_c_conditional(
            n, evaluate=True)
        results.new('C-CMLE F-N', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_n(n))
        results.new('C-CMLE F-D', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_d(n, d))

        results.new('UMLE sig.', 'dof', lambda M, N, B: crit((M - 1) +
                                                             (N - 1) + 1 + B))
        results.new('CMLE sig.', 'dof', lambda M, N, B: crit(B))
        results.new('C-CMLE sig.', 'dof', lambda M, N, B: crit((M - 1) + B))

    if params['sampling'] == 'new':
        results.new('Subnetwork kappa', 'm', lambda d, f: d.kappa)

    def true_est_theta_c(c):
        return (lambda d, f: d.beta[c]), (lambda d, f: f.beta[c])

    for c in covariates:
        # Need to do this hackily to avoid for-loop/lambda-binding weirdness.
        f_true, f_est = true_est_theta_c(c)
        results.new('True theta_{%s}' % c, 'm', f_true)
        results.new('Est. theta_{%s}' % c, 'm', f_est)
    if params['pre_offset'] or params['post_fit']:
        results.new('# Active', 'n',
                    lambda n: np.isfinite(n.offset.matrix()).sum())
    else:
        results.new('# Active', 'n', lambda n: n.M * n.N)
    if params['fisher_information']:

        def info_theta_c(c):
            def f_info_theta_c(d, f):
                return d.I_inv['theta_{%s}' % c]

            return f_info_theta_c

        for c in covariates:
            results.new('Info theta_{%s}' % c, 'm', info_theta_c(c))
    if params['baseline']:

        def rel_mse_p_ij(n, d, f):
            P = d.edge_probabilities(n)
            return rel_mse(f.edge_probabilities(n), f.baseline(n), P)

        results.new('Rel. MSE(P_ij)', 'nm', rel_mse_p_ij)
        if not (params['pre_offset'] or params['post_fit']):

            def rel_mse_logit_p_ij(n, d, f):
                logit_P = d.edge_probabilities(n, logit=True)
                logit_Q = f.baseline_logit(n)
                return rel_mse(f.edge_probabilities(n, logit=True), logit_Q,
                               logit_P)

            results.new('Rel. MSE(logit P_ij)', 'nm', rel_mse_logit_p_ij)

    if params['fit_method'] in [
            'convex_opt', 'conditional', 'c_conditional', 'irls',
            'conditional_is'
    ]:
        results.new('Wall time (sec.)', 'm',
                    lambda d, f: f.fit_info['wall_time'])
    if params['fit_method'] in ['convex_opt', 'conditional', 'conditional_is']:

        def work(f):
            w = 0
            for work_type in ['nll_evals', 'grad_nll_evals', 'cnll_evals']:
                if work_type in f.fit_info:
                    w += f.fit_info[work_type]
            return w

        results.new('Work', 'm', lambda d, f: work(f))
        results.new('||ET_final - T||_2', 'm',
                    lambda d, f: l2(f.fit_info['grad_nll_final']))

    for sub_size in zip(results.M_sizes, results.N_sizes):
        print 'subnetwork size =', sub_size

        if params['sampling'] == 'new':
            gen = RandomSubnetworks(arr, sub_size)
        else:
            gen = RandomSubnetworks(arr, sub_size, method=params['sampling'])

        for rep in range(params['num_reps']):
            seed.next()
            sub = gen.sample()

            if params['fisher_information']:
                data_model.fisher_information(sub)

            if params['sampling'] == 'new':
                data_model.match_kappa(sub, params['kappa_target'])
                sub.generate(data_model)

            if params['load_fits']:
                fit, loaded_fits = loaded_fits[0], loaded_fits[1:]
                fit_model.beta = unpick(fit['theta'])
                if params['fix_broken_cmle_is']:
                    for b_n in fit_model.beta:
                        fit_model.beta[b_n] += 0.1474
                if 'alpha' in fit:
                    sub.row_covariates['alpha_out'] = unpick(fit['alpha'])
                if 'beta' in fit:
                    sub.col_covariates['alpha_in'] = unpick(fit['beta'])
                if 'kappa' in fit:
                    fit_model.kappa = fit['kappa']
                if 'offset' in fit:
                    sub.offset = unpick(fit['offset'])
                if 'fit_info' in fit:
                    fit_model.fit_info = unpick(fit['fit_info'])
            else:
                if params['pre_offset']:
                    sub.offset_extremes()

                if params['fit_method'] == 'convex_opt':
                    fit_model.fit_convex_opt(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'irls':
                    fit_model.fit_irls(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'logistic':
                    fit_model.fit_logistic(sub)
                elif params['fit_method'] == 'logistic_l2':
                    fit_model.fit_logistic_l2(sub, prior_precision=1.0)
                elif params['fit_method'] == 'conditional':
                    fit_model.fit_conditional(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'conditional_is':
                    fit_model.fit_conditional(sub,
                                              T=params['is_T'],
                                              verbose=params['verbose'])
                elif params['fit_method'] == 'c_conditional':
                    fit_model.fit_c_conditional(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'composite':
                    fit_model.fit_composite(sub,
                                            T=100,
                                            verbose=params['verbose'])
                elif params['fit_method'] == 'brazzale':
                    fit_model.fit_brazzale(sub)
                elif params['fit_method'] == 'saddlepoint':
                    fit_model.fit_saddlepoint(sub)
                elif params['fit_method'] == 'none':
                    pass

                if params['post_fit']:
                    sub.offset_extremes()
                    fit_model.fit_convex_opt(sub, fix_beta=True)

                if params['dump_fits']:
                    fit = {}
                    fit['theta'] = pick(fit_model.beta)
                    if 'alpha_out' in sub.row_covariates:
                        fit['alpha'] = pick(sub.row_covariates['alpha_out'])
                    if 'alpha_in' in sub.row_covariates:
                        fit['beta'] = pick(sub.col_covariates['alpha_in'])
                    if not fit_model.kappa is None:
                        fit['kappa'] = fit_model.kappa
                    if not sub.offset is None:
                        sub.offset.dirty()
                        fit['offset'] = pick(sub.offset)
                    if not fit_model.fit_info is None:
                        fit['fit_info'] = pick(fit_model.fit_info)

                    fits.append(fit)

            if params['find_good'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err < params['find_good']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T=1000, verbose=True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('goodmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, {'Y': Y, 'X': X})
                    sys.exit()

            if params['find_bad'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err > params['find_bad']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T=1000, verbose=True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('badmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, {'Y': Y, 'X': X})
                    sys.exit()

            results.record(sub_size, rep, sub, data_model, fit_model)

            if params['verbose']:
                print

    if params['dump_fits']:
        with open(params['dump_fits'], 'w') as outfile:
            json.dump(([(p, pick(params[p])) for p in params], fits), outfile)

    # Compute beta MSEs
    covariate_naming = []
    for c in covariates:
        mse_name = 'MSE(theta_{%s})' % c
        true_name = 'True theta_{%s}' % c
        est_name = 'Est. theta_{%s}' % c
        results.estimate_mse(mse_name, true_name, est_name)
        covariate_naming.append((c, mse_name, true_name, est_name))

    # Report parameters for the run
    print 'Parameters:'
    for field in params:
        print '%s: %s' % (field, str(params[field]))

    # Should not vary between runs with the same seed and same number
    # of arrays tested
    seed.final()

    results.summary()

    return results, covariate_naming
heatmap(A)
plt.subplot(332)
plt.title('Network')
graph = nx.DiGraph()
for n1, n2 in edges:
    graph.add_edge(n1, n2)
pos = nx.graphviz_layout(graph, prog='neato')
nx.draw(graph, pos, node_size=10, with_labels=False)

# Store sampled typical networks from fit models
s_samples = np.empty((params['n_samples'], net.N, net.N))
ns_samples = np.empty((params['n_samples'], net.N, net.N))
c_samples = np.empty((params['n_samples'], net.N, net.N))

print 'Fitting stationary model'
s_model = StationaryLogistic()
for cov_name in cov_names:
    s_model.beta[cov_name] = None
s_model.fit(net)
print 'NLL: %.2f' % s_model.nll(net)
print 'kappa: %.2f' % s_model.kappa
for cov_name in cov_names:
    print '%s: %.2f' % (cov_name, s_model.beta[cov_name])
print
for rep in range(params['n_samples']):
    s_samples[rep, :, :] = s_model.generate(net)
s_model.confidence(net, n_bootstrap=params['n_bootstrap'])
print 'Pivotal:'
for cov_name in cov_names:
    ci = s_model.conf[cov_name]['pivotal']
    print ' %s: (%.2f, %.2f)' % (cov_name, ci[0], ci[1])
        data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    def f_x(i_1, i_2):
        return np.random.uniform(-np.sqrt(3), np.sqrt(3))
    arr.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model.match_kappa(arr, params['kappa_target'])

# Specify parameter of interest that  the confidence interval will try
# to capture
for c in params['covariates_of_interest']:
    theta_true = data_model.beta[c]
    print '%s theta_true: %.2f' % (c, theta_true)

# Setup fit model
if params['fit_method'] == 'conditional':
    fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    fit_model.generate = fit_model.generate_margins
    fit_model.fit = fit_model.fit_conditional
else:
    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    
# Test coverage
methods = []
if params['do_wald']:
Example #16
0
# Initialize the data model; generate covariates and associated coefficients
data_model = NonstationaryLogistic()
data_model.kappa = -7.0
covariates = ['x_1', 'x_2', 'x_3', 'x_4', 'x_5']
for covariate in covariates:
    data_model.beta[covariate] = np.random.normal(0, 1.0)

    x_node = np.random.normal(0, 1.0, N)
    def f_x(i_1, i_2):
        return abs(x_node[i_1] - x_node[i_2]) < 0.3
    net.new_edge_covariate(covariate).from_binary_function_ind(f_x)
net.generate(data_model)
print 'True beta_1: %.2f' % data_model.beta['x_1']

# Initialize the fit model; specify which covariates it should have terms for
fit_model = StationaryLogistic()
for covariate in covariates:
    fit_model.beta[covariate] = None

# Set up plotting
f = plt.figure()
ax = f.add_subplot(1, 1, 1, aspect = 'equal')
ax.set_title('95% confidence regions')
ax.set_xlim(data_model.beta['x_1'] - 2.0, data_model.beta['x_1'] + 2.0)
ax.set_ylim(data_model.beta['x_2'] - 2.0, data_model.beta['x_2'] + 2.0)
ax.set_xlabel('beta_1')
ax.set_ylabel('beta_2')

# Set up random subnetwork generator, and run fitting experiments
gen = RandomSubnetworks(net, (sub_N, sub_N))
for rep in range(10):
    med_degree = np.median(degree)
    net.new_node_covariate('low_degree').from_pairs(net.names,
                                                    degree < med_degree)
    for v_1, v_2, name in [(0, 0, 'high_to_high'),
                           (1, 1, 'low_to_low'),
                           (0, 1, 'high_to_low')]:
        covariates.append(name)

        def f_x(i_1, i_2):
            return ((net.node_covariates['low_degree'][i_1] == v_1) and
                    (net.node_covariates['low_degree'][i_2] == v_2))

        net.new_edge_covariate(name).from_binary_function_ind(f_x)
    
# Initialize fitting model
fit_model = StationaryLogistic()
n_fit_model = NonstationaryLogistic()
for c in covariates:
    fit_model.beta[c] = None
    n_fit_model.beta[c] = None

# Set up recording of results from experiment
results = Results(params['sub_sizes'], params['num_reps'], 'Stationary fit')
add_network_stats(results)
def est_theta_c(c):
    return lambda d, f: f.beta[c]
for c in covariates:
    f_est = est_theta_c(c)
    results.new('%s' % c, 'm', f_est)

all_results = {}
# Report parameters for the run
print 'Parameters:'
for field in params:
    print '%s: %s' % (field, str(params[field]))

# Initialize full network
net = Network(params['N'])

# Generate underlying edge probabilities as offsets
P_alpha, P_beta = params['P_beta_params']
P = np.random.beta(P_alpha, P_beta, (params['N'],params['N']))
net.initialize_offset()[:,:] = logit(P)

# Generate covariates and associated coefficients
data_model = StationaryLogistic()
covariates = []
data_model.beta = {}
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    x_node = np.random.normal(0, 1, params['N'])
    def f_x(i_1, i_2):
        return abs(x_node[i_1] - x_node[i_2]) < params['x_diff_cutoff']
    net.new_edge_covariate(name).from_binary_function_ind(f_x)

if params['fit_nonstationary']:
    fit_model = NonstationaryLogistic()
class_probs = np.random.dirichlet(np.repeat(params['class_conc'], params['K']))
z = np.where(np.random.multinomial(1, class_probs, params['N']) == 1)[1]
net.new_node_covariate_int('z_true')[:] = z
data_model = Blockmodel(data_base_model, params['K'], 'z_true')
Theta = np.random.normal(params['Theta_mean'], params['Theta_sd'],
                         (params['K'],params['K']))
Theta += params['Theta_diag'] * np.identity(params['K'])
Theta -= np.mean(Theta)
data_model.Theta = Theta

net.generate(data_model)
if params['plot_network']:
    net.show_heatmap('z_true')

# Initialize fitting model
fit_base_model = StationaryLogistic()
for c in covariates:
    fit_base_model.beta[c] = None
fit_model = Blockmodel(fit_base_model, params['fit_K'])
if params['fit_nonstationary']:
    n_fit_base_model = NonstationaryLogistic()
    for c in covariates:
        n_fit_base_model.beta[c] = None
    n_fit_model = Blockmodel(n_fit_base_model, params['fit_K'])
net.new_node_covariate_int('z')

# Set up recording of results from experiment
s_results = Results(params['sub_sizes'], params['num_reps'], 'Stationary fit')
add_network_stats(s_results)
s_results.new('Subnetwork kappa', 'm', lambda d, f: d.base_model.kappa)
def f_c(c):
def display_cis(model):
    procedures = set()
    for par in model.conf:
        for procedure in model.conf[par]:
            procedures.add(procedure)
    for procedure in procedures:
        print '%s:' % procedure
        for par in model.conf:
            if not procedure in model.conf[par]: continue
            ci = model.conf[par][procedure]
            print ' %s: (%.2f, %.2f)' % (par, ci[0], ci[1])
    print


print 'Fitting stationary model'
s_model = StationaryLogistic()
for cov_name in cov_names:
    s_model.beta[cov_name] = None
s_model.fit(net)
print 'NLL: %.2f' % s_model.nll(net)
print 'kappa: %.2f' % s_model.kappa
for cov_name in cov_names:
    print '%s: %.2f' % (cov_name, s_model.beta[cov_name])
print
for rep in range(params['n_samples']):
    s_samples[rep, :, :] = s_model.generate(net)
s_model.confidence_boot(net, n_bootstrap=params['n_bootstrap'])
s_model.confidence_wald(net)
display_cis(s_model)

print 'Fitting conditional model'
def generate_data(case, theta, seed):
    # Advance random seed for parameter and covariate construction
    seed.next()

    case = params["case"]
    alpha = beta = kappa = offset = 0
    conditional_sample = False
    if "fixed_example" in case:
        # Load parameters and covariates
        with open(case["fixed_example"], "r") as example_file:
            example = json.load(example_file)

            v = np.array(example["nu"])
            M, N = v.shape

            if "alpha" in example:
                alpha = np.array(example["alpha"]).reshape((M, 1))
            if "beta" in example:
                beta = np.array(example["beta"]).reshape((1, N))
            if "kappa" in example:
                kappa = example["kappa"]
            if "offset" in example:
                offset = example["offset"]

            if ("r" in example) and ("c" in example):
                conditional_sample = True
                r = example["r"]
                c = example["c"]

    else:
        # Generate parameters and covariates
        M, N = case["M"], case["N"]
        if "alpha_min" in case:
            alpha = np.random.uniform(size=(M, 1)) + case["alpha_min"]
        if "beta_min" in case:
            beta = np.random.uniform(size=(1, N)) + case["beta_min"]
        if "kappa" in case:
            kappa = case["kappa"]
        if case["v_discrete"]:
            v = np.random.random(size=(M, N)) < 0.5
        else:
            v = np.random.uniform(size=(M, N))
        if "v_min" in case:
            v += case["v_min"]

        if ("r" in case) and ("c" in case):
            conditional_sample = True
            r = case["r"]
            c = case["c"]

    # Generate Bernoulli probabilities from logistic regression model
    logit_P = np.zeros((M, N)) + kappa
    logit_P += alpha
    logit_P += beta
    logit_P += theta * v
    logit_P += offset

    if conditional_sample:
        arr = Array(M, N)
        arr.new_edge_covariate("x_0")[:] = logit_P
        arr.new_row_covariate("r", dtype=np.int)[:] = r
        arr.new_col_covariate("c", dtype=np.int)[:] = c

        base_model = StationaryLogistic()
        base_model.beta["x_0"] = 1.0
        data_model = FixedMargins(base_model)

    while True:
        # Advance random seed for data generation
        seed.next()

        # Generate data for this trial
        if conditional_sample:
            X = data_model.generate(arr, coverage=2.0)
        else:
            P = 1.0 / (1.0 + np.exp(-logit_P))
            X = np.random.random((M, N)) < P

        yield X, v
Example #22
0
    else:
        data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    def f_x(i_1, i_2):
        return np.random.uniform(-np.sqrt(3), np.sqrt(3))
    arr.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model.match_kappa(arr, params['kappa_target'])

# Specify parameter of interest that the confidence interval will try to capture
for c in params['covariates_of_interest']:
    theta_true = data_model.beta[c]
    print '%s theta_true: %.2f' % (c, theta_true)

# Setup fit model
if params['fit_method'] == 'conditional':
    fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    fit_model.generate = fit_model.generate_margins
    fit_model.fit = fit_model.fit_conditional
else:
    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    
# Test coverage
methods = []
if params['do_large_sample']:
           'sub_sizes': np.arange(10, 70, 10, dtype=np.int),
           'plot_mse_beta': True }

# Set random seed for reproducible output
np.random.seed(137)

# Report parameters for the run
print 'Parameters:'
for field in params:
    print '%s: %s' % (field, str(params[field]))

# Initialize full network
net = Network(params['N'])

# Generate covariates and associated coefficients
data_base_model = StationaryLogistic()
covariates = []
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    data_base_model.beta[name] = np.random.normal(0, params['beta_sd'])

    x_node = np.random.normal(0, 1, params['N'])
    def f_x(i_1, i_2):
        return abs(x_node[i_1] - x_node[i_2]) < params['x_diff_cutoff']
    net.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model = FixedMargins(data_base_model)
net.new_node_covariate_int('r')
net.new_node_covariate_int('c')
Example #24
0
plt.title('Covariates')
covariate_levels = np.zeros((net.N, net.N))
num_covariates = len(cov_names)
for i, val in enumerate(np.linspace(1.0, 0.4, num_covariates)):
    covariate_levels[net.edge_covariates[cov_names[i]].matrix() == True] = val
heatmap(covariate_levels, 'Blues')
plt.subplot(333)
plt.title('Network')
graph = nx.DiGraph()
for n1, n2 in edges:
    graph.add_edge(n1, n2)
pos = nx.nx_pydot.graphviz_layout(graph, prog = 'neato')
nx.draw(graph, pos, node_size = 10, with_labels = False)

print 'Fitting stationary model'
s_model = StationaryLogistic()
for cov_name in cov_names:
    s_model.beta[cov_name] = None
s_model.fit(net, verbose = True)
print 'NLL: %.2f' % s_model.nll(net)
print 'kappa: %.2f' % s_model.kappa
for cov_name in cov_names:
    print '%s: %.2f' % (cov_name, s_model.beta[cov_name])
print

print 'Fitting nonstationary model'
alpha_zero(net)
ns_model = NonstationaryLogistic()
for cov_name in cov_names:
    ns_model.beta[cov_name] = None
ns_model.fit(net, verbose = True)
n_rep = 100
n_boot = 10
alpha_level = 0.05

net = Network(N)
alpha_norm(net, alpha_sd)
for d in range(D):
    net.new_edge_covariate('x_%d' % d)[:,:] = np.random.normal(0, 1, (N, N))

data_model = NonstationaryLogistic()
for d in range(D):
    data_model.beta['x_%d' % d] = np.random.normal(0, 1)
data_model.beta['x_0'] = theta
data_model.match_kappa(net, kappa_target)

s_fit = StationaryLogistic()
ns_fit = NonstationaryLogistic()
for d in range(D):
    s_fit.beta['x_%d' % d] = None
    ns_fit.beta['x_%d' % d] = None

def safe_ci(model, name, method):
    if name in model.conf:
        if method in model.conf[name]:
            return model.conf[name][method]
    else:
        return (0.0, 0.0)

braz_covered = 0
ws_covered = 0
wn_covered = 0
Example #26
0
                    (np.sign(np.random.random() - 0.5)))
    else:
        print 'Error: no covariate distribution specified.'
        sys.exit()

    net.new_edge_covariate(name).from_binary_function_ind(f_x)

# Specify data model as generation of permuation networks
net.new_node_covariate_int('r')[:] = 1
net.new_node_covariate_int('c')[:] = 1
data_model = FixedMargins(data_model, 'r', 'c', coverage = 2.0)

if params['fit_nonstationary']:
    fit_model = NonstationaryLogistic()
else:
    fit_model = StationaryLogistic()
for b in data_model.base_model.beta:
    fit_model.beta[b] = 0.0

# Set up recording of results from experiment
results = Results(params['sub_sizes'], params['sub_sizes'], params['num_reps'])
add_array_stats(results)
def true_est_theta_b(b):
    return (lambda d, f: d.base_model.beta[b]), (lambda d, f: f.beta[b])
for b in fit_model.beta:
    # Need to do this hackily to avoid for-loop/lambda-binding weirdness.
    f_true, f_est = true_est_theta_b(b)
    results.new('True theta_{%s}' % b, 'm', f_true)
    results.new('Est. theta_{%s}' % b, 'm', f_est)
results.new('# Active', 'n', lambda n: n.N ** 2)
results.new('Separated', 'm', lambda d, f: f.fit_info['separated'])
Example #27
0
# Report parameters for the run
print 'Parameters:'
for field in params:
    print '%s: %s' % (field, str(params[field]))

# Initialize full network
net = Network(params['N'])

# Generate underlying edge probabilities as offsets
P_alpha, P_beta = params['P_beta_params']
P = np.random.beta(P_alpha, P_beta, (params['N'], params['N']))
net.initialize_offset()[:, :] = logit(P)

# Generate covariates and associated coefficients
data_model = StationaryLogistic()
covariates = []
data_model.beta = {}
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    x_node = np.random.normal(0, 1, params['N'])

    def f_x(i_1, i_2):
        return abs(x_node[i_1] - x_node[i_2]) < params['x_diff_cutoff']

    net.new_edge_covariate(name).from_binary_function_ind(f_x)
plt.title('Covariates')
covariate_levels = np.zeros((net.N, net.N))
num_covariates = len(cov_names)
for i, val in enumerate(np.linspace(1.0, 0.4, num_covariates)):
    covariate_levels[net.edge_covariates[cov_names[i]].matrix() == True] = val
heatmap(covariate_levels, 'Blues')
plt.subplot(333)
plt.title('Network')
graph = nx.DiGraph()
for n1, n2 in edges:
    graph.add_edge(n1, n2)
pos = nx.graphviz_layout(graph, prog='neato')
nx.draw(graph, pos, node_size=10, with_labels=False)

print 'Fitting stationary model'
s_model = StationaryLogistic()
for cov_name in cov_names:
    s_model.beta[cov_name] = None
s_model.fit(net, verbose=True)
print 'NLL: %.2f' % s_model.nll(net)
print 'kappa: %.2f' % s_model.kappa
for cov_name in cov_names:
    print '%s: %.2f' % (cov_name, s_model.beta[cov_name])
print

print 'Fitting nonstationary model'
alpha_zero(net)
ns_model = NonstationaryLogistic()
for cov_name in cov_names:
    ns_model.beta[cov_name] = None
ns_model.fit(net, verbose=True)
            c = case['c']

    # Generate Bernoulli probabilities from logistic regression model
    logit_P = np.zeros((M,N)) + kappa
    logit_P += alpha
    logit_P += beta
    logit_P += theta * v
    logit_P += offset

    if conditional_sample:
        arr = Array(M, N)
        arr.new_edge_covariate('x_0')[:] = logit_P
        arr.new_row_covariate('r', dtype = np.int)[:] = r
        arr.new_col_covariate('c', dtype = np.int)[:] = c
        
        base_model = StationaryLogistic()
        base_model.beta['x_0'] = 1.0
        data_model = FixedMargins(base_model)

    while True:
        # Advance random seed for data generation
        seed.next()

        # Generate data for this trial
        if conditional_sample:
            X = data_model.generate(arr, coverage = 100.0)
        else:
            P = 1.0 / (1.0 + np.exp(-logit_P))
            X = np.random.random((M,N)) < P

        yield X, v
Example #30
0
class_probs = np.random.dirichlet(np.repeat(params['class_conc'], params['K']))
z = np.where(np.random.multinomial(1, class_probs, params['N']) == 1)[1]
net.new_node_covariate_int('z_true')[:] = z
data_model = Blockmodel(data_base_model, params['K'], 'z_true')
Theta = np.random.normal(params['Theta_mean'], params['Theta_sd'],
                         (params['K'], params['K']))
Theta += params['Theta_diag'] * np.identity(params['K'])
Theta -= np.mean(Theta)
data_model.Theta = Theta

net.generate(data_model)
if params['plot_network']:
    net.show_heatmap('z_true')

# Initialize fitting model
fit_base_model = StationaryLogistic()
for c in covariates:
    fit_base_model.beta[c] = None
fit_model = Blockmodel(fit_base_model, params['fit_K'])
if params['fit_nonstationary']:
    n_fit_base_model = NonstationaryLogistic()
    for c in covariates:
        n_fit_base_model.beta[c] = None
    n_fit_model = Blockmodel(n_fit_base_model, params['fit_K'])
net.new_node_covariate_int('z')

# Set up recording of results from experiment
s_results = Results(params['sub_sizes'], params['num_reps'], 'Stationary fit')
add_network_stats(s_results)
s_results.new('Subnetwork kappa', 'm', lambda d, f: d.base_model.kappa)
Example #31
0
    degree = r + c
    med_degree = np.median(degree)
    net.new_node_covariate('low_degree').from_pairs(net.names,
                                                    degree < med_degree)
    for v_1, v_2, name in [(0, 0, 'high_to_high'), (1, 1, 'low_to_low'),
                           (0, 1, 'high_to_low')]:
        covariates.append(name)

        def f_x(i_1, i_2):
            return ((net.node_covariates['low_degree'][i_1] == v_1)
                    and (net.node_covariates['low_degree'][i_2] == v_2))

        net.new_edge_covariate(name).from_binary_function_ind(f_x)

# Initialize fitting model
fit_model = StationaryLogistic()
n_fit_model = NonstationaryLogistic()
for c in covariates:
    fit_model.beta[c] = None
    n_fit_model.beta[c] = None

# Set up recording of results from experiment
results = Results(params['sub_sizes'], params['num_reps'], 'Stationary fit')
add_network_stats(results)


def est_theta_c(c):
    return lambda d, f: f.beta[c]


for c in covariates: