def __init__(self, base_model_architecture="resnet50_128", num_clusters=8, vset_dim=128, pooling='vlad', vlad_v2=False): super(HashSetNet, self).__init__() if base_model_architecture == "resnet50_128": self.base_model = resnet50_128(ROOT_DIR + '/Models_weights/resnet50_128.pth') dim = 128 elif base_model_architecture == "senet50_128": self.base_model = senet50_128(ROOT_DIR + '/Models_weights/senet50_128.pth') dim = 128 elif base_model_architecture == "resnet50_2048": self.base_model = resnet50_ft(ROOT_DIR + '/Models_weights/resnet50_ft_dims_2048.pth') dim = 2048 elif base_model_architecture == "senet50_2048": self.base_model = senet50_ft(ROOT_DIR + '/Models_weights/senet50_ft_dims_2048.pth') dim = 2048 self.pooling = pooling if self.pooling == 'vlad': self.net_vlad = NetVLAD(num_clusters=num_clusters, dim=dim, vset_dim=vset_dim, vlad_v2=vlad_v2, normalize_input=True) elif self.pooling == 'gem': self.gem_pooling = GeM(p=3, eps=1e-6) elif self.pooling == 'sum': self.sum_pooling = SumPooling() self.bn_x = nn.BatchNorm1d(dim, affine=False)
def __init__(self, model_type="resnet50_128"): super(Net, self).__init__() if model_type == "resnet50_128": self.base_model = resnet50_128(ROOT_DIR + '/Models_weights/resnet50_128.pth') self.encoder_dim = 128 elif model_type == "senet50_128": self.base_model = senet50_128(ROOT_DIR + '/Models_weights/senet50_128.pth') self.encoder_dim = 128 elif model_type == "resnet50_2048": self.base_model = resnet50_ft(ROOT_DIR + '/Models_weights/resnet50_ft_dims_2048.pth') self.encoder_dim = 2048 elif model_type == "senet50_2048": self.base_model = senet50_ft(ROOT_DIR + '/Models_weights/senet50_ft_dims_2048.pth') self.encoder_dim = 2048
def __init__(self, base_model_architecture="resnet50_128", num_clusters=8, vset_dim=128, pooling='vlad', vlad_v2=False, step_size=200): super(HashSetNet, self).__init__() if base_model_architecture == "resnet50_128": self.base_model = resnet50_128(ROOT_DIR + '/Models_weights/resnet50_128.pth') dim = 128 elif base_model_architecture == "senet50_128": self.base_model = senet50_128(ROOT_DIR + '/Models_weights/senet50_128.pth') dim = 128 elif base_model_architecture == "resnet50_2048": self.base_model = resnet50_ft( ROOT_DIR + '/Models_weights/resnet50_ft_dims_2048.pth') dim = 2048 elif base_model_architecture == "senet50_2048": self.base_model = senet50_ft( ROOT_DIR + '/Models_weights/senet50_ft_dims_2048.pth') dim = 2048 self.pooling = pooling if self.pooling == 'vlad': self.net_vlad = NetVLAD(num_clusters=num_clusters, dim=dim, vset_dim=vset_dim, vlad_v2=vlad_v2, normalize_input=True) elif self.pooling == 'gem': self.gem_pooling = GeM(p=3, eps=1e-6) elif self.pooling == 'sum': self.sum_pooling = SumPooling() self.bn_x = nn.BatchNorm1d(dim, affine=False) self.iter_num = 0 self.step_size = step_size self.gamma = 0.005 self.power = 0.5 self.init_scale = 1.0 self.activation = nn.Tanh() self.scale = self.init_scale self.first_flag = True
def __init__(self, base_model_architecture="resnet50_128", num_clusters=8, vlad_dim=128, vlad_v2=False): super(SetNet, self).__init__() if base_model_architecture == "resnet50_128": self.base_model = resnet50_128(ROOT_DIR + '/Models_weights/resnet50_128.pth') dim = 128 elif base_model_architecture == "senet50_128": self.base_model = senet50_128(ROOT_DIR + '/Models_weights/senet50_128.pth') dim = 128 elif base_model_architecture == "resnet50_2048": self.base_model = resnet50_ft(ROOT_DIR + '/Models_weights/resnet50_ft_dims_2048.pth') dim = 2048 elif base_model_architecture == "senet50_2048": self.base_model = senet50_ft(ROOT_DIR + '/Models_weights/senet50_ft_dims_2048.pth') dim = 2048 self.net_vlad = NetVLAD(num_clusters=num_clusters, dim=dim, vlad_dim=vlad_dim, vlad_v2=vlad_v2, normalize_input=True) self.bn_x = nn.BatchNorm1d(dim, affine=False)
def __init__(self, base_model_architecture="resnet50_128"): super(Baseline, self).__init__() if base_model_architecture == "resnet50_128": self.base_model = resnet50_128(ROOT_DIR + '/Models_weights/resnet50_128.pth') dim = 128 elif base_model_architecture == "senet50_128": self.base_model = senet50_128(ROOT_DIR + '/Models_weights/senet50_128.pth') dim = 128 elif base_model_architecture == "resnet50_2048": self.base_model = resnet50_ft( ROOT_DIR + '/Models_weights/resnet50_ft_dims_2048.pth') dim = 2048 elif base_model_architecture == "senet50_2048": self.base_model = senet50_ft( ROOT_DIR + '/Models_weights/senet50_ft_dims_2048.pth') dim = 2048 self.sum_pooling = SumPooling() self.bn_x = nn.BatchNorm1d(dim, affine=False)