Example #1
0
def main(filename='data/iris-virginica.txt'):
    # Load data
    data = read_data('%s/%s' % (filepath, filename))

    X, y = data[:, :-1].astype(float), data[:, -1]

    class_vec = list(set(y))
    K = len(class_vec)

    Y = pd.get_dummies(y).astype(int).as_matrix()

    # Define parameters
    n = X.shape[0]
    d = X.shape[1]
    #
    # # Define layer sizes
    print(n, d, K)
    layers = [d, 5, K]

    model = NeuralNetwork(layers=layers,
                          num_epochs=1000,
                          learning_rate=0.10,
                          alpha=0.9,
                          activation_func='sigmoid',
                          epsilon=0.001,
                          print_details=True)
    model.fit(X, Y)

    Y_hat = model.predict(X)
    accuracy = compute_acc(Y_hat, Y)
    print('Model training accuracy:\t%.2f' % (accuracy))
Example #2
0
def my_solution2(X_train, X_test, y_train, y_test, hyperparams=None):
    if hyperparams == None:
        hyperparams = {
            'hidden_layer_sizes': (3, ),
            'learning_rate': 0.1,
            'epoch': 3852,
            'momentum': 0.04,
            'tol': 1e-10,
            'reg_coef': 0
        }

    if not hasattr(hyperparams, 'batch_size'):
        hyperparams['batch_size'] = X_train.shape[0]

    # train with self
    nn = NeuralNetwork(**hyperparams)
    nn.fit(X_train, y_train)
    y_pred = nn.predict(X_test)

    y_pred = y_pred.argmax(axis=1)
    y_test = y_test.argmax(axis=1)

    # evaluate
    print('My implements2:')
    print(classification_report(y_test, y_pred))

    return nn, y_pred, y_test
Example #3
0
def main(filename='data/iris-virginica.txt'):
    # Load data
    data = read_data('%s/%s' % (filepath, filename))

    X, y = data[:,:-1].astype(float), data[:,-1]


    class_vec = list(set(y))
    K = len(class_vec)


    Y = pd.get_dummies(y).astype(int).as_matrix()


    # Define parameters
    n = X.shape[0]
    d = X.shape[1]
    #
    # # Define layer sizes
    print(n,d,K)
    layers = [d, 5, K]

    model = NeuralNetwork(layers=layers, num_epochs=1000, learning_rate=0.10, alpha=0.9,
                          activation_func='sigmoid', epsilon=0.001, print_details=True)
    model.fit(X, Y)

    Y_hat = model.predict(X)
    accuracy = compute_acc(Y_hat, Y)
    print('Model training accuracy:\t%.2f' % (accuracy))
Example #4
0
from NN import NeuralNetwork
from Normalizer import Normalizer
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()
X = cancer['data']
y = cancer['target']
length = len(cancer['feature_names'])

nn = NeuralNetwork([length, 30, 20, 10, 5, 1])

X_train, X_test, y_train, y_test = train_test_split(X, y)

normalize = Normalizer()
normalize.fit(X_train)
X_train = normalize.transform(X_train)
X_test = normalize.transform(X_test)

nn.fit(X_train, y_train, epochs=1000, verbose=False)
predictions = nn.predict(X_test)
print(nn.cost(predictions, y_test))