def main():
    """ load training data"""
    inputs = np.loadtxt("../handwriting/X2_100samples.dat")
    targets = np.loadtxt("../handwriting/y2_100samples.dat")
    """ define network topology """
    conec = mlgraph((inputs.shape[1], 10, 1))

    #     reg = 0.1
    reg = False
    net = ffnet(conec)
    system = NNSystem(net, inputs, targets, reg=reg)

    database = system.create_database(
        #                     db="/home/ab2111/machine_learning_landscapes/neural_net/db_ffnet_100samples_reg"+str(reg) +".sqlite"
        db="../db/db_ffnet_100samples.sqlite")
    run_gui(system, database)
Example #2
0
    def RunSimulation(self, real_time_rate=1.0):
        '''
        The Princess Diaries was a good movie.
        '''
        builder = DiagramBuilder()
        scene_graph = builder.AddSystem(SceneGraph())

        # object_file_path = FindResourceOrThrow(
        #     "drake/examples/manipulation_station/models/061_foam_brick.sdf")
        # sdf_file = FindResourceOrThrow("drake/multibody/benchmarks/acrobot/acrobot.sdf")
        # urdf_file = FindResourceOrThrow("drake/multibody/benchmarks/acrobot/acrobot.urdf")
        sdf_file = "assets/acrobot.sdf"
        urdf_file = "assets/acrobot.urdf"
        plant = builder.AddSystem(MultibodyPlant())
        plant.RegisterAsSourceForSceneGraph(scene_graph)
        Parser(plant, scene_graph).AddModelFromFile(sdf_file)
        plant.Finalize(scene_graph)
        assert plant.geometry_source_is_registered()
        builder.Connect(
            plant.get_geometry_poses_output_port(),
            scene_graph.get_source_pose_port(plant.get_source_id()))
        builder.Connect(scene_graph.get_query_output_port(),
                        plant.get_geometry_query_input_port())

        # Add
        nn_system = NNSystem(self.pytorch_nn_object)
        builder.AddSystem(nn_system)

        # NN -> plant
        builder.Connect(nn_system.NN_out_output_port,
                        plant.get_actuation_input_port())
        # plant -> NN
        builder.Connect(plant.get_continuous_state_output_port(),
                        nn_system.NN_in_input_port)

        # Add meshcat visualizer
        meshcat = MeshcatVisualizer(scene_graph)
        builder.AddSystem(meshcat)
        # builder.Connect(scene_graph.GetOutputPort("lcm_visualization"),
        builder.Connect(scene_graph.get_pose_bundle_output_port(),
                        meshcat.GetInputPort("lcm_visualization"))

        # build diagram
        diagram = builder.Build()
        meshcat.load()
        # time.sleep(2.0)
        RenderSystemWithGraphviz(diagram)

        # construct simulator
        simulator = Simulator(diagram)

        # context = diagram.GetMutableSubsystemContext(
        #     self.station, simulator.get_mutable_context())

        simulator.set_publish_every_time_step(False)
        simulator.set_target_realtime_rate(real_time_rate)
        simulator.Initialize()
        sim_duration = 5.
        simulator.StepTo(sim_duration)
        print("stepping complete")
def main():
    """ load training data"""
    inputs  = np.loadtxt("../handwriting/X2_100samples.dat")
    targets = np.loadtxt("../handwriting/y2_100samples.dat")
    
    """ define network topology """
    conec = mlgraph((inputs.shape[1],10,1))

#     reg = 0.1
    reg=False
    net = ffnet(conec)
    system = NNSystem(net, inputs, targets, reg=reg)
    
    database = system.create_database(
#                     db="/home/ab2111/machine_learning_landscapes/neural_net/db_ffnet_100samples_reg"+str(reg) +".sqlite"
                    db="../db/db_ffnet_100samples.sqlite"
                )
    run_gui(system, database)
    def RunSimulation(self, real_time_rate=1.0):
        '''
        Here we test using the NNSystem in a Simulator to drive
        an acrobot.
        '''
        sdf_file = "assets/acrobot.sdf"
        urdf_file = "assets/acrobot.urdf"

        builder = DiagramBuilder()
        plant, scene_graph = AddMultibodyPlantSceneGraph(builder)
        parser = Parser(plant=plant, scene_graph=scene_graph)
        parser.AddModelFromFile(sdf_file)
        plant.Finalize(scene_graph)

        # Add
        nn_system = NNSystem(self.pytorch_nn_object)
        builder.AddSystem(nn_system)

        # NN -> plant
        builder.Connect(nn_system.NN_out_output_port,
                        plant.get_actuation_input_port())
        # plant -> NN
        builder.Connect(plant.get_continuous_state_output_port(),
                        nn_system.NN_in_input_port)

        # Add meshcat visualizer
        meshcat = MeshcatVisualizer(scene_graph)
        builder.AddSystem(meshcat)
        # builder.Connect(scene_graph.GetOutputPort("lcm_visualization"),
        builder.Connect(scene_graph.get_pose_bundle_output_port(),
                        meshcat.GetInputPort("lcm_visualization"))

        # build diagram
        diagram = builder.Build()
        meshcat.load()
        # time.sleep(2.0)
        RenderSystemWithGraphviz(diagram)

        # construct simulator
        simulator = Simulator(diagram)

        # context = diagram.GetMutableSubsystemContext(
        #     self.station, simulator.get_mutable_context())

        simulator.set_publish_every_time_step(False)
        simulator.set_target_realtime_rate(real_time_rate)
        simulator.Initialize()
        sim_duration = 5.
        simulator.StepTo(sim_duration)
        print("stepping complete")
    
    dg.plot()
    dg.label_minima(labels)
    print labels
    plt.show()
#     dg.savefig("/home/ab2111/machine_learning_landscapes/neural_net/dg.png")

from NNSystem import NNSystem

""" load training data"""
inputs  = np.loadtxt("../handwriting/X2_100samples.dat")
targets = np.loadtxt("../handwriting/y2_100samples.dat")
from ffnet_validation import get_validation_data
vinputs, vtargets = get_validation_data()
    
""" define network topology """
conec = mlgraph((inputs.shape[1],10,1))
print inputs.shape
# exit()
net = ffnet(conec)
system = NNSystem(net, inputs, targets)
        
database = system.create_database(db="../db/db_ffnet_100samples.sqlite")

# make_disconnectivity_graph(system, database, vinputs, vtargets)

#     plt.plot(ts.coords,'x')
#     plt.plot(ts.eigenvec,'o')
# plt.show()
make_validation_disconnectivity_graph(system, database)
def create_nn_policy_system(kNetConstructor, params_list):
    net = create_nn(kNetConstructor, params_list)
    net.eval()
    nn_policy = NNSystem(pytorch_nn_object=net)
    return nn_policy