Example #1
0
def inference(input_tensor, bg_tensor, regularizer=None):
    # do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True, dropout=False, regularizer=None):
    for key in Config.CONV_LAYERS_CONFIG:
        layer_config = Config.CONV_LAYERS_CONFIG[key]
        conv_res = do_conv(
            key,
            input_tensor,
            layer_config['deep'],
            [layer_config['size'], layer_config['size']],
            dropout=layer_config['dropout']

        )
        input_tensor = conv_res
        if layer_config['pooling']['exists']:
            pooling = pool(
                layer_config['pooling']['name'],
                input_tensor
            )
            input_tensor = pooling
    for key in Config.CONV_LAYERS_CONFIG_BG:
        layer_config = Config.CONV_LAYERS_CONFIG_BG[key]
        conv_res = do_conv(
            key,
            bg_tensor,
            layer_config['deep'],
            [layer_config['size'], layer_config['size']],
            dropout=layer_config['dropout']
        )
        bg_tensor = conv_res
        if layer_config['pooling']['exists']:
            pooling = pool(
                layer_config['pooling']['name'],
                bg_tensor,
                is_max_pool=layer_config['pooling']['max_pooling']
            )
            bg_tensor = pooling
    input_tensor = convert_two_dim(input_tensor)
    bg_tensor = convert_two_dim(bg_tensor)
    input_tensor = tf.concat([input_tensor, bg_tensor], axis=1)
    print input_tensor
    # FC_layer(layer_name, x, out_nodes, regularizer=None):
    fc1 = FC_layer(
        'fc1',
        input_tensor,
        Config.FC_SIZE,
        regularizer
    )
    fc1 = batch_norm(fc1)
    fc2 = FC_layer(
        'fc2',
        fc1,
        Config.OUTPUT_NODE,
        regularizer
    )
    return fc2
Example #2
0
def inference(input_tensor, regularizer=None, return_feature=False):
    # do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True, dropout=False, regularizer=None):
    for key in Config.CONV_LAYERS_CONFIG:
        layer_config = Config.CONV_LAYERS_CONFIG[key]
        if layer_config['batch_norm']:
            input_tensor = batch_norm(input_tensor)
        conv_res = do_conv(key,
                           input_tensor,
                           layer_config['deep'],
                           [layer_config['size'], layer_config['size']],
                           dropout=layer_config['dropout'],
                           is_pretrain=layer_config['trainable'],
                           batch_normalization=layer_config['batch_norm'])
        input_tensor = conv_res
        if layer_config['pooling']['exists']:
            pooling = pool(layer_config['pooling']['name'], input_tensor)
            input_tensor = pooling

    # FC_layer(layer_name, x, out_nodes, regularizer=None):
    fc1 = FC_layer('fc1', input_tensor, Config.FC_SIZE, regularizer)
    fc1 = batch_norm(fc1)
    fc2 = FC_layer('fc2', fc1, Config.OUTPUT_NODE, regularizer)
    if return_feature:
        return fc2, fc1
    return fc2
Example #3
0
def inference(input_tensors, regularizer):
    CONV_LAYER_OUT = None
    for index, input_tensor in enumerate(input_tensors):
        # 对于每个尺度的图像,进行下面的RNN-Part
        input_shape = input_tensor.get_shape().as_list()
        state = tf.zeros([Config.BATCH_SIZE, Config.STATE_FEATURE_DIM])
        with tf.variable_scope('rnn-part-' + str(index), reuse=False):
            # 对不同phase之间参数的一样的
            for i in range(input_shape[3]):
                if i == 0:
                    reuse = False
                else:
                    reuse = True
                cur_input = input_tensor[:, :, :, i]
                cur_input = tf.reshape(
                    cur_input,
                    [input_shape[0], input_shape[1], input_shape[2], 1])
                for key in Config.CONV_LAYERS_CONFIG:
                    layer_config = Config.CONV_LAYERS_CONFIG[key]
                    conv_res = do_conv(
                        key,
                        cur_input,
                        layer_config['deep'],
                        [layer_config['size'], layer_config['size']],
                        dropout=layer_config['dropout'],
                        reuse=reuse)
                    cur_input = conv_res
                    if layer_config['pooling']['exists']:
                        pooling = pool(
                            layer_config['pooling']['name'],
                            cur_input,
                            is_max_pool=layer_config['pooling']['is_max'])
                        cur_input = pooling
                # 完成了卷积操作
                cur_input = convert_two_dim(cur_input)  # 展成二维的变量
                print cur_input
                cur_input = tf.concat([cur_input, state], axis=1)
                print cur_input
                state = FC_layer('extract_state', cur_input,
                                 Config.STATE_FEATURE_DIM, regularizer,
                                 reuse)  # 更新状态

            if CONV_LAYER_OUT is None:
                CONV_LAYER_OUT = state
            else:
                CONV_LAYER_OUT = tf.concat([CONV_LAYER_OUT, state], axis=1)

    input_tensor = CONV_LAYER_OUT
    for key in Config.FC_LAYERS_CONFIG:
        layer_config = Config.FC_LAYERS_CONFIG[key]
        if not layer_config['regularizer']:
            cur_regularizer = None
        else:
            cur_regularizer = regularizer
        input_tensor = FC_layer(key, input_tensor, layer_config['size'],
                                cur_regularizer)
        if layer_config['batch_norm']:
            input_tensor = batch_norm(input_tensor)
    return input_tensor
Example #4
0
def inference(input_tensor, regularizer):
    input_shape = input_tensor.get_shape().as_list()
    CONV_OUT = None
    with tf.variable_scope('rnn-part'):
        for i in range(input_shape[3]):
            if i == 0:
                reuse = False
            else:
                reuse = True
            cur_input = input_tensor[:, :, :, i]
            cur_input = tf.reshape(
                cur_input, [input_shape[0], input_shape[1], input_shape[2], 1])
            layer_keys = list(Config.CONV_LAYERS_CONFIG)
            layer_keys.sort()
            for key in layer_keys:
                layer_config = Config.CONV_LAYERS_CONFIG[key]
                conv_res = do_conv(
                    key,
                    cur_input,
                    layer_config['deep'],
                    [layer_config['size'], layer_config['size']],
                    dropout=layer_config['dropout'],
                    reuse=reuse)
                cur_input = conv_res
                if layer_config['pooling']['exists']:
                    pooling = pool(layer_config['pooling']['name'], cur_input)
                    cur_input = pooling
            # 完成了卷积操作
            cur_input = convert_two_dim(cur_input)  # 展成二维的变量
            if CONV_OUT is None:
                CONV_OUT = cur_input
            else:
                CONV_OUT = tf.concat([CONV_OUT, cur_input], axis=1)
        input_tensor = CONV_OUT
        layer_keys = list(Config.FC_LAYERS_CONFIG)
        layer_keys.sort()
        for key in layer_keys:
            layer_config = Config.FC_LAYERS_CONFIG[key]
            if not layer_config['regularizer']:
                cur_regularizer = None
            else:
                cur_regularizer = regularizer
            input_tensor = FC_layer(key, input_tensor, layer_config['size'],
                                    cur_regularizer)
            if layer_config['batch_norm']:
                input_tensor = batch_norm(input_tensor)
        return input_tensor
Example #5
0
def inference(input_tensors,
              phase_names,
              regularizer=None,
              return_feature=False):
    print input_tensors.get_shape().as_list()
    # input_tensor 包含了三个期项,shape是batchsize, image_w, image_h, 3
    # do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True, dropout=False, regularizer=None):
    keys = list(Config.CONV_LAYERS_CONFIG.keys())
    keys.sort()
    CONV_OUTPUT = None
    for phase_index, phase in enumerate(phase_names):
        phase_config = Config.CONV_LAYERS_CONFIG[phase]
        conv_names = list(phase_config.keys())
        conv_names.sort()
        input_tensor = input_tensors[:, :, :, phase_index]
        for conv_name in conv_names:
            conv_layer_config = phase_config[conv_name]
            conv_res = do_conv(
                conv_name,
                input_tensor,
                conv_layer_config['deep'],
                [conv_layer_config['size'], conv_layer_config['size']],
                dropout=conv_layer_config['dropout'],
                is_pretrain=conv_layer_config['trainable'],
                batch_normalization=conv_layer_config['batch_norm'])
            input_tensor = conv_res
            if conv_layer_config['pooling']['exists']:
                pooling = pool(conv_layer_config['pooling']['name'],
                               input_tensor)
                input_tensor = pooling
        input_tensor = convert_two_dim(input_tensor)
        if CONV_OUTPUT is not None:
            CONV_OUTPUT = tf.concat([CONV_OUTPUT, input_tensor], axis=1)
        else:
            CONV_OUTPUT = input_tensor

    # FC_layer(layer_name, x, out_nodes, regularizer=None):
    fc1 = FC_layer('fc1', CONV_OUTPUT, Config.FC_SIZE, regularizer)
    fc1 = batch_norm(fc1)
    fc2 = FC_layer('fc2', fc1, Config.OUTPUT_NODE, regularizer)
    if return_feature:
        return fc2, fc1
    return fc2
Example #6
0
def inference(input_tensors, regularizer=None):
    conv_laerys_output = None
    for index, input_tensor in enumerate(input_tensors):
        if index == 0:
            reuse = None
        else:
            reuse = True
        for key in Config.CONV_LAYERS_CONFIG:
            layer_config = Config.CONV_LAYERS_CONFIG[key]
            conv_res = do_conv(key,
                               input_tensor,
                               layer_config['deep'],
                               [layer_config['size'], layer_config['size']],
                               dropout=layer_config['dropout'],
                               reuse=reuse)
            input_tensor = conv_res
            if layer_config['pooling']['exists']:
                pooling = pool(layer_config['pooling']['name'], input_tensor)
                input_tensor = pooling
        if conv_laerys_output is None:
            conv_laerys_output = convert_two_dim(input_tensor)
        else:
            conv_laerys_output = tf.concat(
                [conv_laerys_output,
                 convert_two_dim(input_tensor)], 1)
    input_tensor = conv_laerys_output
    for key in Config.FC_LAYERS_CONFIG:
        layer_config = Config.FC_LAYERS_CONFIG[key]
        if not layer_config['regularizer']:
            cur_regularizer = None
        else:
            cur_regularizer = regularizer
        input_tensor = FC_layer(key, input_tensor, layer_config['size'],
                                cur_regularizer)
        if layer_config['batch_norm']:
            input_tensor = batch_norm(input_tensor)
    return input_tensor
Example #7
0
def inference(input_tensors, bg_tensors, regularizer):
    CONV_OUTPUT = None
    for index, input_tensor in enumerate(input_tensors):
        # 同一个尺度
        bg_tensor = bg_tensors[index]
        shape = input_tensor.get_shape().as_list()
        shape_bg = bg_tensor.get_shape().as_list()
        state = tf.zeros(
            shape=[
                shape[0],
                Config.STATE_FEATURE_DIM
            ],
            dtype=tf.float32
        )
        with tf.variable_scope('rnn-part-' + str(index)):
            for i in range(shape[3]):
                cur_input_tensor = input_tensor[:, :, :, i] # 获取某一层的数据
                cur_input_tensor = tf.reshape(
                    cur_input_tensor,
                    shape=[
                        shape[0],
                        shape[1],
                        shape[2],
                        1
                    ]
                )
                cur_bg_tensor = bg_tensor[:, :, :, i]
                cur_bg_tensor = tf.reshape(
                    cur_bg_tensor,
                    shape=[
                        shape_bg[0],
                        shape_bg[1],
                        shape_bg[2],
                        1
                    ]
                )
                if i == 0:
                    reuse = False
                else:
                    reuse = True
                # 针对该phase 计算roi的特征
                for key in Config.CONV_LAYERS_CONFIG:
                    layer_config = Config.CONV_LAYERS_CONFIG[key]
                    # def do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True, dropout=False, regularizer=None, reuse=False):
                    conv_res = do_conv(
                        key,
                        cur_input_tensor,
                        layer_config['deep'],
                        [layer_config['size'], layer_config['size']],
                        dropout=layer_config['dropout'],
                        reuse=reuse
                    )
                    cur_input_tensor = conv_res
                    if layer_config['pooling']['exists']:
                        pooling = pool(
                            layer_config['pooling']['name'],
                            cur_input_tensor
                        )
                        cur_input_tensor = pooling
                # 针对该phase计算bg的特征
                for key in Config.CONV_LAYERS_CONFIG_BG:
                    layer_config = Config.CONV_LAYERS_CONFIG_BG[key]
                    conv_res = do_conv(
                        key,
                        cur_bg_tensor,
                        layer_config['deep'],
                        [layer_config['size'], layer_config['size']],
                        dropout=layer_config['dropout'],
                        reuse=reuse
                    )
                    cur_bg_tensor = conv_res
                    if layer_config['pooling']['exists']:
                        pooling = pool(
                            layer_config['pooling']['name'],
                            cur_bg_tensor
                        )
                        cur_bg_tensor = pooling
                cur_input_tensor = convert_two_dim(cur_input_tensor)
                cur_bg_tensor = convert_two_dim(cur_bg_tensor)
                fc_input = tf.concat([cur_input_tensor, cur_bg_tensor, state], axis=1)
                state = FC_layer('extract_state', fc_input, Config.STATE_FEATURE_DIM, regularizer, reuse)  # 更新状态
            if CONV_OUTPUT is None:
                CONV_OUTPUT = state
            else:
                CONV_OUTPUT = tf.concat([CONV_OUTPUT, state], axis=1)

    input_tensor = CONV_OUTPUT
    for key in Config.FC_LAYERS_CONFIG:
        layer_config = Config.FC_LAYERS_CONFIG[key]
        if not layer_config['regularizer']:
            cur_regularizer = None
        else:
            cur_regularizer = regularizer
        input_tensor = FC_layer(
            key,
            input_tensor,
            layer_config['size'],
            cur_regularizer
        )
        if layer_config['batch_norm']:
            input_tensor = batch_norm(input_tensor)
    return input_tensor
Example #8
0
def inference(input_tensors, regularizer):
    CONV_LAYER_OUT = None
    params_shared = False
    for index, input_tensor in enumerate(input_tensors):
        # 对于每个尺度的图像,进行下面的RNN-Part
        input_shape = input_tensor.get_shape().as_list()
        with tf.variable_scope('rnn-part-' + str(index), reuse=False):
            # 对不同phase之间参数的一样的
            ONE_SIZE_FEATURE = None
            for i in range(input_shape[3]):
                if i == 0:
                    reuse = False
                else:
                    reuse = True
                cur_input = input_tensor[:, :, :, i]
                cur_input = tf.reshape(
                    cur_input,
                    [input_shape[0], input_shape[1], input_shape[2], 1])
                for key in Config.CONV_LAYERS_CONFIG:
                    layer_config = Config.CONV_LAYERS_CONFIG[key]
                    cur_input = batch_norm(cur_input)
                    conv_res = do_conv(
                        key,
                        cur_input,
                        layer_config['deep'],
                        [layer_config['size'], layer_config['size']],
                        dropout=layer_config['dropout'],
                        reuse=reuse)
                    cur_input = conv_res
                    if layer_config['pooling']['exists']:
                        pooling = pool(
                            layer_config['pooling']['name'],
                            cur_input,
                            is_max_pool=layer_config['pooling']['is_max'])
                        cur_input = pooling
                # 完成了卷积操作
                cur_input = convert_two_dim(cur_input)  # 展成二维的变量
                print cur_input
                if ONE_SIZE_FEATURE is None:
                    ONE_SIZE_FEATURE = cur_input
                else:
                    ONE_SIZE_FEATURE = tf.concat([ONE_SIZE_FEATURE, cur_input],
                                                 axis=1)

            FC_OUT = FC_layer('CONVERT-' + str(index), ONE_SIZE_FEATURE,
                              Config.SIZE_FEATURE_DIM, regularizer)
            FC_OUT = batch_norm(FC_OUT)
            print 'FC OUT is ', FC_OUT
            if CONV_LAYER_OUT is None:
                CONV_LAYER_OUT = FC_OUT
            else:
                CONV_LAYER_OUT = tf.concat([CONV_LAYER_OUT, FC_OUT], axis=1)
            print 'CONVLAYEROUT is ', CONV_LAYER_OUT
    print 'CONVLAYEROUT is ', CONV_LAYER_OUT
    input_tensor = CONV_LAYER_OUT
    for key in Config.FC_LAYERS_CONFIG:
        layer_config = Config.FC_LAYERS_CONFIG[key]
        if not layer_config['regularizer']:
            cur_regularizer = None
        else:
            cur_regularizer = regularizer
        input_tensor = FC_layer(key, input_tensor, layer_config['size'],
                                cur_regularizer)
        if layer_config['batch_norm']:
            input_tensor = batch_norm(input_tensor)
    return input_tensor
Example #9
0
    def convlayers(self):
        self.parameters = []

        # zero-mean input
        # with tf.name_scope('preprocess') as scope:
        #     mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
        #     images = self.imgs-mean
        # 对输入数据进行归一化
        images = batch_norm(self.imgs)
        # images = self.imgs
        # images = self.imgs
        # conv1_1
        # do_conv(name, input_tensor, out_channel, ksize, stride=[1, 1, 1, 1], is_pretrain=True):
        self.conv1_1 = do_conv('conv1_1',
                               images,
                               64, [3, 3],
                               is_pretrain=self.trainable['conv1_1'])
        self.conv1_2 = do_conv('conv1_2',
                               self.conv1_1,
                               64, [3, 3],
                               is_pretrain=self.trainable['conv1_2'],
                               batch_normalization=False)
        self.pooling1 = pool('pooling1', self.conv1_2, is_max_pool=True)

        self.conv2_1 = do_conv('conv2_1',
                               self.pooling1,
                               128, [3, 3],
                               is_pretrain=self.trainable['conv2_1'])
        self.conv2_2 = do_conv('conv2_2',
                               self.conv2_1,
                               128, [3, 3],
                               is_pretrain=self.trainable['conv2_2'],
                               batch_normalization=False)

        self.pooling2 = pool('pooling2', self.conv2_2, is_max_pool=True)

        self.conv3_1 = do_conv('conv3_1',
                               self.pooling2,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_1'])
        self.conv3_2 = do_conv('conv3_2',
                               self.conv3_1,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_2'])
        self.conv3_3 = do_conv('conv3_3',
                               self.conv3_2,
                               256, [3, 3],
                               is_pretrain=self.trainable['conv3_3'],
                               batch_normalization=False)

        self.pooling3 = pool('pooing3', self.conv3_3, is_max_pool=True)

        self.conv4_1 = do_conv('conv4_1',
                               self.pooling3,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_1'])
        self.conv4_2 = do_conv('conv4_2',
                               self.conv4_1,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_2'])
        self.conv4_3 = do_conv('conv4_3',
                               self.conv4_2,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv4_3'],
                               batch_normalization=False)

        self.pooling4 = pool('pooling4', self.conv4_3, is_max_pool=True)

        self.conv5_1 = do_conv('conv5_1',
                               self.pooling4,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_1'])
        self.conv5_2 = do_conv('conv5_2',
                               self.conv5_1,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_2'])
        self.conv5_3 = do_conv('conv5_3',
                               self.conv5_2,
                               512, [3, 3],
                               is_pretrain=self.trainable['conv5_3'],
                               batch_normalization=False)

        self.pooling5 = pool('pooling5', self.conv5_3, is_max_pool=True)

        self.convs_output = self.pooling5