Example #1
0
def main():
    global args
    global mse_policy
    parser = define_args()
    args = parser.parse_args()
    if not args.end_to_end:
        assert args.pretrained == False
    mse_policy = args.loss_policy == 'homography_mse'
    if args.clas:
        assert args.nclasses == 4

    # Check GPU availability
    if not args.no_cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")
    torch.backends.cudnn.benchmark = args.cudnn

    # Define save path
    save_id = 'Mod_{}_opt_{}_loss_{}_lr_{}_batch_{}_end2end_{}_lanes_{}_resize_{}_pretrain{}_clas{}' \
            .format(args.mod, args.optimizer,
                    args.loss_policy,
                    args.learning_rate,
                    args.batch_size,
                    args.end_to_end,
                    args.nclasses,
                    args.resize,
                    args.pretrained,
                    args.clas)

    # Get homography
    M_inv = get_homography(args.resize)

    # Dataloader for training and validation set
    train_loader, valid_loader, valid_idx = get_loader(
        args.num_train,
        args.json_file,
        args.image_dir,
        args.gt_dir,
        args.flip_on,
        args.batch_size,
        shuffle=True,
        num_workers=args.nworkers,
        end_to_end=args.end_to_end,
        resize=args.resize,
        split_percentage=args.split_percentage)

    # Define network
    model = Net(args)
    define_init_weights(model, args.weight_init)

    if not args.no_cuda:
        # Load model on gpu before passing params to optimizer
        model = model.cuda()

    # Define optimizer and scheduler
    optimizer = define_optim(args.optimizer, model.parameters(),
                             args.learning_rate, args.weight_decay)
    scheduler = define_scheduler(optimizer, args)

    # Define loss criteria for multiple tasks
    criterion, criterion_seg = define_loss_crit(args)
    criterion_line_class = nn.CrossEntropyLoss().cuda()
    criterion_horizon = nn.BCEWithLogitsLoss().cuda()

    # Name
    global crit_string
    crit_string = 'AREA**2' if args.end_to_end else 'ENTROPY'
    if args.clas:
        crit_string = 'TOT LOSS'

    # Logging setup
    best_epoch = 0
    lowest_loss = np.inf
    log_file_name = 'log_train_start_0.txt'
    args.save_path = os.path.join(args.save_path, save_id)
    mkdir_if_missing(args.save_path)
    mkdir_if_missing(os.path.join(args.save_path, 'example/'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/train'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/valid'))

    # Computes the file with lane data of the validation set
    validation_set_path = os.path.join(args.save_path, 'validation_set.json')
    load_valid_set_file_all(valid_idx, validation_set_path, args.image_dir)
    global valid_set_labels
    global val_set_path
    global ls_result_path
    valid_set_labels = [
        json.loads(line) for line in open(validation_set_path).readlines()
    ]
    val_set_path = os.path.join(args.save_path, 'validation_set_dst.json')
    ls_result_path = os.path.join(args.save_path, 'ls_result.json')

    # Tensorboard writer
    if not args.no_tb:
        global writer
        writer = SummaryWriter(os.path.join(args.save_path, 'Tensorboard/'))
    # Train, evaluate or resume
    args.resume = first_run(args.save_path)
    if args.resume and not args.test_mode and not args.evaluate:
        path = os.path.join(
            args.save_path,
            'checkpoint_model_epoch_{}.pth.tar'.format(int(args.resume)))
        if os.path.isfile(path):
            log_file_name = 'log_train_start_{}.txt'.format(args.resume)
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(path)
            args.start_epoch = checkpoint['epoch']
            lowest_loss = checkpoint['loss']
            best_epoch = checkpoint['best epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            log_file_name = 'log_train_start_0.txt'
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> no checkpoint found at '{}'".format(path))

    # Only evaluate
    elif args.evaluate:
        best_file_name = glob.glob(os.path.join(args.save_path,
                                                'model_best*'))[0]
        if os.path.isfile(best_file_name):
            sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
            print("=> loading checkpoint '{}'".format(best_file_name))
            checkpoint = torch.load(best_file_name)
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print("=> no checkpoint found at '{}'".format(best_file_name))
        validate(valid_loader, model, criterion, criterion_seg,
                 criterion_line_class, criterion_horizon, M_inv)
        return

    # Start training from clean slate
    else:
        # Redirect stdout
        sys.stdout = Logger(os.path.join(args.save_path, log_file_name))

    # INIT MODEL
    print(40 * "=" + "\nArgs:{}\n".format(args) + 40 * "=")
    print("Init model: '{}'".format(args.mod))
    print("Number of parameters in model {} is {:.3f}M".format(
        args.mod.upper(),
        sum(tensor.numel() for tensor in model.parameters()) / 1e6))

    # Start training and validation for nepochs
    for epoch in range(args.start_epoch, args.nepochs):
        print("\n => Start train set for EPOCH {}".format(epoch + 1))
        # Adjust learning rate
        if args.lr_policy is not None and args.lr_policy != 'plateau':
            scheduler.step()
            lr = optimizer.param_groups[0]['lr']
            print('lr is set to {}'.format(lr))

        if args.pretrained:
            if (epoch < args.pretrain_epochs):
                args.end_to_end = False
                print("Pretraining so set args.end_to_end to {}".format(
                    args.end_to_end))
            else:
                args.end_to_end = True

        # Define container objects to keep track of multiple losses/metrics
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        avg_area = AverageMeter()
        exact_area = AverageMeter()

        # Specfiy operation modus
        model.train()

        # compute timing
        end = time.time()

        # Start training loop
        for i, (input, gt, params, idx, gt_line,
                gt_horizon) in tqdm(enumerate(train_loader)):

            # Time dataloader
            data_time.update(time.time() - end)

            # Put inputs on gpu if possible
            if not args.no_cuda:
                input, params = input.cuda(non_blocking=True), params.cuda(
                    non_blocking=True)
                input = input.float()
            assert params.size(1) == 4
            gt0, gt1, gt2, gt3 = params[:,
                                        0, :], params[:,
                                                      1, :], params[:,
                                                                    2, :], params[:,
                                                                                  3, :]

            # Run model
            try:
                beta0, beta1, beta2, beta3, weightmap_zeros, M, \
                output_net, outputs_line, outputs_horizon = model(input, args.end_to_end)
            except RuntimeError as e:
                print(
                    "Batch with idx {} skipped due to singular matrix".format(
                        idx.numpy()))
                print(e)
                continue

            # Compute losses on parameters or on segmentation
            if args.end_to_end:
                loss = criterion(beta0, gt0) + criterion(beta1, gt1)
                if args.nclasses > 3:
                    # Masks to create zero in the loss when lane line is not present
                    mask_llhs = torch.prod(gt2 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta2).type(torch.FloatTensor)
                    mask_rrhs = torch.prod(gt3 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta3).type(torch.FloatTensor)
                    if not args.no_cuda:
                        mask_llhs = mask_llhs.cuda()
                        mask_rrhs = mask_rrhs.cuda()
                    beta2 = beta2 * mask_llhs
                    beta3 = beta3 * mask_rrhs

                    # add losses of further lane lines
                    loss += criterion(beta2, gt2) + criterion(beta3, gt3)

            else:
                gt = gt.cuda(non_blocking=True)
                loss = criterion_seg(output_net, gt)
                with torch.no_grad():
                    area = criterion(beta0, gt0) + criterion(beta1, gt1)
                    avg_area.update(area.item(), input.size(0))

            # Horizon task & Line classification task
            if args.clas:
                gt_horizon, gt_line = gt_horizon.cuda(non_blocking=True), \
                                      gt_line.cuda(non_blocking=True)
                _, line_pred = torch.max(outputs_line, 1)
                loss_horizon = criterion_horizon(outputs_horizon, gt_horizon)
                loss_line = criterion_line_class(outputs_line, gt_line)
                loss = loss * args.weight_fit + (
                    loss_line + loss_horizon) * args.weight_class
            else:
                line_pred = gt_line

            losses.update(loss.item(), input.size(0))

            # Clip gradients (usefull for instabilities or mistakes in ground truth)
            if args.clip_grad_norm != 0:
                nn.utils.clip_grad_norm(model.parameters(),
                                        args.clip_grad_norm)

            # Setup backward pass
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Time trainig iteration
            batch_time.update(time.time() - end)
            end = time.time()

            # Exact AREA computation for egolines on cpu
            with torch.no_grad():
                gt_left_lines = polynomial(gt0.cpu())
                gt_right_lines = polynomial(gt1.cpu())
                pred_left_lines = polynomial(beta0.cpu())
                pred_right_lines = polynomial(beta1.cpu())
                trap_left = pred_left_lines.trapezoidal(gt_left_lines)
                trap_right = pred_right_lines.trapezoidal(gt_right_lines)
                exact_area.update(((trap_left + trap_right) / 2).mean().item(),
                                  input.size(0))

            # Print info
            if (i + 1) % args.print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.8f} ({loss.avg:.8f})'.format(
                          epoch + 1,
                          i + 1,
                          len(train_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses))

            # Plot weightmap and curves
            if (i + 1) % args.save_freq == 0:
                save_weightmap('train', M, M_inv, weightmap_zeros, beta0,
                               beta1, beta2, beta3, gt0, gt1, gt2, gt3,
                               line_pred, gt, 0, i, input, args.no_ortho,
                               args.resize, args.save_path)

        losses_valid, avg_area_valid, avg_exact_area, \
        acc_hor_tot, acc_line_tot = validate(valid_loader,
                                             model, criterion,
                                             criterion_seg,
                                             criterion_line_class,
                                             criterion_horizon,
                                             M_inv,
                                             epoch)
        if not args.end_to_end:
            print("===> Average AREA**2 from segmentation  on training set is {:.8f}" \
                    .format(avg_area.avg))
            print("===> Average AREA**2 from segmetnation validation set is {:.8f}" \
                    .format(avg_area_valid))
        print("===> Average {}-loss on training set is {:.8f}".format(
            crit_string, losses.avg))
        print("===> Average {}-loss on validation set is {:.8f}".format(
            crit_string, losses_valid))
        print("===> Average exact area on training set is {:.8f}".format(
            exact_area.avg))
        print("===> Average exact area on validation set is {:.8f}".format(
            avg_exact_area))

        if args.clas:
            print(
                "===> Average HORIZON ACC on val is {:.8}".format(acc_hor_tot))
            print("===> Average LINE ACC on val is {:.8}".format(acc_line_tot))

        print("===> Last best {}-loss was {:.8f} in epoch {}".format(
            crit_string, lowest_loss, best_epoch))

        if not args.no_tb:
            if args.end_to_end:
                writer.add_scalars('Loss/Area**2', {'Training': losses.avg},
                                   epoch)
                writer.add_scalars('Loss/Area**2',
                                   {'Validation': losses_valid}, epoch)
            else:
                writer.add_scalars('Loss/Area**2', {'Training': avg_area.avg},
                                   epoch)
                writer.add_scalars('Loss/Area**2',
                                   {'Validation': avg_area_valid}, epoch)
                writer.add_scalars('CROSS-ENTROPY', {'Training': losses.avg},
                                   epoch)
                writer.add_scalars('CROSS-ENTROPY',
                                   {'Validation': losses_valid}, epoch)
            writer.add_scalars('Metric', {'Training': exact_area.avg}, epoch)
            writer.add_scalars('Metric', {'Validation': avg_exact_area}, epoch)

        total_score = avg_exact_area

        # Adjust learning_rate if loss plateaued
        if args.lr_policy == 'plateau':
            scheduler.step(total_score)
            lr = optimizer.param_groups[0]['lr']
            print('LR plateaued, hence is set to {}'.format(lr))

        # File to keep latest epoch
        with open(os.path.join(args.save_path, 'first_run.txt'), 'w') as f:
            f.write(str(epoch))
        # Save model
        to_save = False
        if total_score < lowest_loss:
            to_save = True
            best_epoch = epoch + 1
            lowest_loss = total_score
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'best epoch': best_epoch,
                'arch': args.mod,
                'state_dict': model.state_dict(),
                'loss': lowest_loss,
                'optimizer': optimizer.state_dict()
            }, to_save, epoch)
    if not args.no_tb:
        writer.close()
Example #2
0
def main():
    global args
    global mse_policy
    parser = define_args()
    args = parser.parse_args()
    if not args.end_to_end:
        assert args.pretrained == False
    if args.clas:
        assert args.nclasses == 4
    if args.val_batch_size is None:
        args.val_batch_size = args.batch_size
    

    # Check GPU availability
    if not args.no_cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")
    torch.backends.cudnn.benchmark = args.cudnn

    # Define save path
    save_id = 'Mod_{}_opt_{}_loss_{}_lr_{}_batch_{}_end2end_{}_chol_{}_lanes_{}_pretrain{}_clas{}_mask{}_flip_on{}_activation_{}' \
            .format(args.mod, args.optimizer,
                    args.loss_policy,
                    args.learning_rate,
                    args.batch_size,
                    args.end_to_end,
                    args.use_cholesky,
                    args.nclasses,
                    args.pretrained,
                    args.clas,
                    args.mask_percentage,
                    args.flip_on,
                    args.activation_layer)
    

    train_loader, valid_loader, valid_idx = get_loader(args.num_train,
                                                       args.json_file, 'Labels/lanes_ordered.json',
                                                       args.image_dir, 
                                                       args.gt_dir,
                                                       args.flip_on, args.batch_size, args.val_batch_size,
                                                       shuffle=True, num_workers=args.nworkers,
                                                       end_to_end=args.end_to_end,
                                                       resize=args.resize,
                                                       nclasses=args.nclasses,
                                                       split_percentage=args.split_percentage)

    test_loader = get_testloader(args.test_dir, args.val_batch_size, args.nworkers)

    # Define network
    model = Net(args)
    define_init_weights(model, args.weight_init)

    if not args.no_cuda:
        # Load model on gpu before passing params to optimizer
        model = model.cuda()

    # Define optimizer and scheduler
    optimizer = define_optim(args.optimizer, model.parameters(),
                             args.learning_rate, args.weight_decay)
    scheduler = define_scheduler(optimizer, args)


    # Define loss criteria for multiple tasks
    criterion, criterion_seg = define_loss_crit(args)
    criterion_horizon = nn.BCEWithLogitsLoss().cuda()
    criterion_line_class = nn.BCEWithLogitsLoss().cuda()

    # Name
    global crit_string
    if args.loss_policy == 'area' and args.end_to_end:
        crit_string = 'AREA**2' 
    elif args.loss_policy == 'backproject' and args.end_to_end:
        crit_string = 'MSE' 
    else:
        crit_string = 'ENTROPY' 
    if args.clas:
        crit_string = 'TOT LOSS' 

    # Logging setup
    best_epoch = 0
    lowest_loss = np.inf
    losses_valid = np.inf
    highest_score = 0
    log_file_name = 'log_train_start_0.txt'
    args.save_path = os.path.join(args.save_path, save_id)
    mkdir_if_missing(args.save_path)
    mkdir_if_missing(os.path.join(args.save_path, 'example/'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/train'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/valid'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/pretrain'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/testset'))

    # Computes the file with lane data of the validation set
    validation_set_path = os.path.join(args.save_path , 'validation_set.json')
    load_valid_set_file_all(valid_idx, validation_set_path, args.image_dir) 
    global valid_set_labels
    global val_set_path
    global ls_result_path
    valid_set_labels = [json.loads(line) for line in open(validation_set_path).readlines()]
    val_set_path = os.path.join(args.save_path, 'validation_set_dst.json')
    ls_result_path = os.path.join(args.save_path, 'ls_result.json')

    # Train, evaluate or resume
    args.resume = first_run(args.save_path)
    if args.resume and not args.test_mode and not args.evaluate:
        path = os.path.join(args.save_path, 'checkpoint_model_epoch_{}.pth.tar'.format(
            int(args.resume)))
        if os.path.isfile(path):
            log_file_name = 'log_train_start_{}.txt'.format(args.resume)
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(path)
            args.start_epoch = checkpoint['epoch']
            lowest_loss = checkpoint['loss']
            best_epoch = checkpoint['best epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            log_file_name = 'log_train_start_0.txt'
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> no checkpoint found at '{}'".format(path))

    # Only evaluate
    elif args.evaluate:
        skip = get_flags()
        files = glob.glob(os.path.join(args.save_path, 'model_best*'))
        if len(files) == 0:
            print('No checkpoint found!')
        else:
            best_file_name = files[0]
            if os.path.isfile(best_file_name):
                sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
                print("=> loading checkpoint '{}'".format(best_file_name))
                checkpoint = torch.load(best_file_name)
                model.load_state_dict(checkpoint['state_dict'])
            else:
                print("=> no checkpoint found at '{}'".format(best_file_name))

        # validate(valid_loader, model, criterion, criterion_seg, 
                # criterion_line_class, criterion_horizon)

        if args.clas:
            test_model(test_loader, model, 
                       criterion, 
                       criterion_seg, 
                       criterion_line_class, 
                       criterion_horizon, args)
        return

    # Start training from clean slate
    else:
        # Redirect stdout
        sys.stdout = Logger(os.path.join(args.save_path, log_file_name))

    # INIT MODEL
    print(40*"="+"\nArgs:{}\n".format(args)+40*"=")
    print("Init model: '{}'".format(args.mod))
    print("Number of parameters in model {} is {:.3f}M".format(
        args.mod.upper(), sum(tensor.numel() for tensor in model.parameters())/1e6))

    # Define activation for classification branch
    if args.clas:
        Sigm = nn.Sigmoid()

    # Start training and validation for nepochs
    for epoch in range(args.start_epoch, args.nepochs):
        print("\n => Start train set for EPOCH {}".format(epoch + 1))
        print("Saving to: ", args.save_path)
        # Adjust learning rate
        if args.lr_policy is not None and args.lr_policy != 'plateau':
            scheduler.step()
            lr = optimizer.param_groups[0]['lr']
            print('lr is set to {}'.format(lr))

        skip = get_flags(epoch)

        # Define container objects to keep track of multiple losses/metrics
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        rmse_metric = AverageMeter()
        losses_skip = AverageMeter()

        # Specfiy operation modus
        model.train()

        # compute timing
        end = time.time()

        # Start training loop
        for i, (input, gt, lanes, idx, gt_line, gt_horizon, valid_points) in tqdm(enumerate(train_loader)):
            # Time dataloader
            data_time.update(time.time() - end)

            # Reset coordinates
            x_cal0, x_cal1, x_cal2, x_cal3 = [None]*4

            # Put inputs on gpu if possible
            if not args.no_cuda:
                input, lanes = input.cuda(), lanes.cuda()
                valid_points = valid_points.cuda()
                gt = gt.cuda().squeeze(1)
            assert lanes.size(1) == 4
            gt0, gt1, gt2, gt3 = lanes[:, 0, :], lanes[:, 1, :], lanes[:, 2, :], lanes[:, 3, :]

            # Skip LSQ layer to make sure matrix cannot be singular
            # TODO check if this is really necessary
            if skip:
                output_net = model(input, gt_line, args.end_to_end, early_return=True)
                loss = criterion_seg(output_net, gt)
                # Setup backward pass
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses_skip.update(loss.item(), input.size(0))
                # Plot
                if (i + 1) % args.save_freq == 0:
                    img = input[0].permute(1, 2, 0).data.cpu().numpy()
                    gt_orig = gt[0].data.cpu().numpy()
                    _, out = torch.max(output_net[0], dim=0)
                    out = out.data.cpu().numpy()
                    img = np.clip(img, 0, 1)
                    fig = plt.figure()
                    ax1 = fig.add_subplot(311)
                    ax2 = fig.add_subplot(312)
                    ax3 = fig.add_subplot(313)
                    ax1.imshow(img)
                    ax2.imshow(gt_orig)
                    ax3.imshow(out)
                    fig.savefig(args.save_path + '/example/pretrain/idx-{}_batch-{}'.format(0, i))
                    plt.clf()
                    plt.close(fig)

                # Skip rest
                continue

            # Run model
            try:
                beta0, beta1, beta2, beta3, weightmap_zeros, \
                output_net, outputs_line, outputs_horizon, output_seg = model(input, gt_line, args.end_to_end, gt=gt)
            except RuntimeError as e:
                print("Batch with idx {} skipped due to singular matrix".format(idx.numpy()))
                print(e)
                continue

            # Compute losses on parameters or on segmentation
            if args.end_to_end:
                loss_left, x_cal0 = criterion(beta0, gt0, valid_points[:, 0])
                loss_right, x_cal1 = criterion(beta1, gt1, valid_points[:, 1])
                if args.nclasses > 3:
                    # add losses of further lane lines
                    loss_left1, x_cal2 = criterion(beta2, gt2, valid_points[:, 2])
                    loss_right1, x_cal3 = criterion(beta3, gt3, valid_points[:, 3])
                    loss_left += loss_left1
                    loss_right += loss_right1
                # average loss over lanes
                loss = (loss_left + loss_right) / args.nclasses
            else:
                loss = criterion_seg(output_net, gt)
                with torch.no_grad():
                    loss_left, x_cal0 = criterion(beta0, gt0, valid_points[:, 0])
                    loss_right, x_cal1 = criterion(beta1, gt1, valid_points[:, 1])
                    if args.nclasses > 3:
                        # add losses of further lane lines
                        loss_left1, x_cal2 = criterion(beta2, gt2, valid_points[:, 2])
                        loss_right1, x_cal3 = criterion(beta3, gt3, valid_points[:, 3])
                        loss_left += loss_left1
                        loss_right += loss_right1
                    loss_metric = (loss_left + loss_right) / args.nclasses
                    rmse_metric.update(loss_metric.item(), input.size(0))

            # Horizon task & Line classification task
            if args.clas:
                gt_horizon, gt_line = gt_horizon.cuda(), \
                                      gt_line.cuda()
                loss_horizon = criterion_horizon(outputs_horizon, gt_horizon).double()
                loss_line = criterion_line_class(outputs_line, gt_line).double()
                loss = loss*args.weight_fit + (loss_line + loss_horizon)*args.weight_class
            else:
                line_pred = gt_line

            # Update loss
            losses.update(loss.item(), input.size(0))

            # Clip gradients (usefull for instabilities or mistakes in ground truth)
            if args.clip_grad_norm != 0:
                nn.utils.clip_grad_norm(model.parameters(), args.clip_grad_norm)

            # Setup backward pass
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Time trainig iteration
            batch_time.update(time.time() - end)
            end = time.time()

            # Print info
            if (i + 1) % args.print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.8f} ({loss.avg:.8f})\t'
                      'rmse_metric {rmse.val:.8f} ({rmse.avg:.8f})'.format(
                       epoch+1, i+1, len(train_loader), batch_time=batch_time,
                       data_time=data_time, loss=losses, rmse=rmse_metric))

            # Plot weightmap and curves
            if (i + 1) % args.save_freq == 0:
                save_weightmap('train', weightmap_zeros, x_cal0, x_cal1, x_cal2, x_cal3,
                               gt0, gt1, gt2, gt3, gt, 0, i, input,
                               args.no_ortho, args.resize, args.save_path, args.nclasses, args.no_mapping)

        print("===> Average {}-loss on training set is {:.8f}".format(crit_string, losses.avg))
        if not skip:
            losses_valid, acc_hor_tot, acc_line_tot, rmse_metric_valid = validate(valid_loader,
                                                                                  model, criterion,
                                                                                  criterion_seg, 
                                                                                  criterion_line_class,
                                                                                  criterion_horizon,
                                                                                  epoch)
            print("===> Average {}-loss on validation set is {:.8f}".format(crit_string, losses_valid))
        else:
            print("===> Average segmentation-loss on training set is {:.8f}".format(losses_skip.avg))
        if not args.end_to_end and not skip:
            print("===> Average rmse on training set is {:.8f}".format(rmse_metric.avg))
            print("===> Average rmse on validation set is {:.8f}".format(rmse_metric_valid))

        if args.clas and len(valid_loader) != 0 :
            print("===> Average HORIZON ACC on val is {:.8}".format(acc_hor_tot))
            print("===> Average LINE ACC on val is {:.8}".format(acc_line_tot))

        print("===> Last best {}-loss was {:.8f} in epoch {}".format(
            crit_string, lowest_loss, best_epoch))

        total_score = losses_valid

        # TODO get acc
        if args.clas:
            metric = test_model(test_loader, model, 
                       criterion, 
                       criterion_seg, 
                       criterion_line_class, 
                       criterion_horizon, args)
            total_score = metric


        # Adjust learning_rate if loss plateaued
        if args.lr_policy == 'plateau':
            scheduler.step(total_score)
            lr = optimizer.param_groups[0]['lr']
            print('LR plateaued, hence is set to {}'.format(lr))

        # File to keep latest epoch
        with open(os.path.join(args.save_path, 'first_run.txt'), 'w') as f:
            f.write(str(epoch))
        # Save model
        to_save = False
        if total_score > highest_score:
            to_save = True
            best_epoch = epoch+1
            highest_score = total_score
        save_checkpoint({
            'epoch': epoch + 1,
            'best epoch': best_epoch,
            'arch': args.mod,
            'state_dict': model.state_dict(),
            'loss': lowest_loss,
            'optimizer': optimizer.state_dict()}, to_save, epoch)
def main():
    global args
    global mse_policy
    parser = define_args()
    args = parser.parse_args()
    if not args.end_to_end:
        assert args.pretrained == False
    mse_policy = args.loss_policy == 'homography_mse'
    if args.clas:
        assert args.nclasses == 4

    # Check GPU availability
    if not args.no_cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")
    torch.backends.cudnn.benchmark = args.cudnn

    # Define save path
    save_id = 'Mod_{}_opt_{}_loss_{}_lr_{}_batch_{}_end2end_{}_lanes_{}_resize_{}_pretrain{}_clas{}' \
            .format(args.mod, args.optimizer,
                    args.loss_policy,
                    args.learning_rate,
                    8, # args.batch_size, #8,
                    args.end_to_end,
                    args.nclasses,
                    args.resize,
                    args.pretrained,
                    args.clas)

    # Compute file lsq parameters
    M_inv = get_homography(args.resize)

    # Dataloader for training and validation set
    imgs_loader = get_imgs_loader(args.image_dir, args.resize)
    # input = load_image(args.image_dir, args.resize)

    # Define network
    model = Net(args)
    define_init_weights(model, args.weight_init)

    if not args.no_cuda:
        # Load model on gpu before passing params to optimizer
        model = model.cuda()

    # Define optimizer and scheduler
    optimizer = define_optim(args.optimizer, model.parameters(),
                             args.learning_rate, args.weight_decay)
    scheduler = define_scheduler(optimizer, args)

    # # Define loss criteria for multiple tasks
    # criterion, criterion_seg = define_loss_crit(args)
    # criterion_line_class = nn.CrossEntropyLoss().cuda()
    # criterion_horizon = nn.BCEWithLogitsLoss().cuda()

    # Name
    global crit_string
    crit_string = 'AREA**2' if args.end_to_end else 'ENTROPY'
    if args.clas:
        crit_string = 'TOT LOSS'

    # Logging setup
    best_epoch = 0
    lowest_loss = np.inf
    log_file_name = 'log_train_start_0.txt'
    args.save_path = os.path.join(args.save_path, save_id)
    mkdir_if_missing(args.save_path)
    mkdir_if_missing(os.path.join(args.save_path, 'example/'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/train'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/valid'))

    # # Computes the file with lane data of the validation set
    # validation_set_path = os.path.join(args.save_path , 'validation_set.json')
    # load_valid_set_file_all(valid_idx, validation_set_path, args.image_dir)
    # global valid_set_labels
    # global val_set_path
    # global ls_result_path
    # valid_set_labels = [json.loads(line) for line in open(validation_set_path).readlines()]
    # val_set_path = os.path.join(args.save_path, 'validation_set_dst.json')
    # ls_result_path = os.path.join(args.save_path, 'ls_result.json')

    # Tensorboard writer
    if not args.no_tb:
        global writer
        writer = SummaryWriter(os.path.join(args.save_path, 'Tensorboard/'))
    # Train, evaluate or resume
    args.resume = first_run(args.save_path)

    best_file_name = glob.glob(os.path.join(args.save_path, 'model_best*'))[0]
    if os.path.isfile(best_file_name):
        sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
        print("=> loading checkpoint '{}'".format(best_file_name))
        checkpoint = torch.load(best_file_name)
        model.load_state_dict(checkpoint['state_dict'])
    else:
        print("=> no checkpoint found at '{}'".format(best_file_name))
    # validate(valid_loader, model, criterion, criterion_seg,
    #         criterion_line_class, criterion_horizon, M_inv)
    # test_image(model, input, M_inv, args.batch_size)
    evaluate_imgs(model, imgs_loader, M_inv)
    return