Example #1
0
def setup_tensorflow():
    """Restores a tensorflow session and returns it if successful
    """
    net_model = NNModel()

    tf_config = tf.ConfigProto(device_count={'GPU': config.should_use_gpu})
    sess = tf.Session(config=tf_config)

    # Add ops to save and restore all of the variables
    saver = tf.train.Saver()

    # Load the model checkpoint file
    try:
        tmp_file = config.tf_checkpoint_file
        print("Loading model from config: {}".format(tmp_file))
    except:
        tmp_file = config.load(
            'last_tf_model')  #gets the cached last tf trained model
        print "loading latest trained model: " + str(tmp_file)
    # print("CAN'T FIND THE GOOD MODEL")
    # sys.exit(-1)

    # Try to restore a session
    try:
        saver.restore(sess, tmp_file)
    except:
        print("Error restoring TF model: {}".format(tmp_file))
        # sys.exit(-1)

    return sess, net_model
Example #2
0
import sys, os
import matplotlib
import numpy as np
from matplotlib.pylab import *
matplotlib.use('Agg')
sys.path.append('..')
import tensorflow as tf
import config

from NeuralNet.convnetshared1 import NNModel
from NeuralNet.data_model import TrainingData

if __name__ == '__main__':
    net_model = NNModel()

    tf_config = tf.ConfigProto(device_count={'GPU': config.should_use_gpu})
    sess = tf.Session(config=tf_config)

    # Add ops to save and restore all of the variables
    saver = tf.train.Saver()

    # Load the model checkpoint file
    try:
        tmp_file = config.tf_checkpoint_file
        print("Loading model from config: {}".format(tmp_file))
    except:
        tmp_file = config.load(
            'last_tf_model')  #gets the cached last tf trained model
        print "loading latest trained model: " + str(tmp_file)
        # print("CAN'T FIND THE GOOD MODEL")
        # sys.exit(-1)