print("Input data shape", shape(data)) index = np.arange(len(label)) np.random.shuffle(index) label = label[index] data = data[index] trX=data[:600] trY=label[:600] teX=data[600:] teY=label[600:] x = tf.placeholder(tf.float32, shape=(None, 1000)) y = tf.placeholder(tf.float32, shape=(None, 4)) model = dnn_model(input_dim=1000) predictions = model(x) sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(trX, trY, batch_size=batch_size, epochs=nb_epoch, shuffle=True) # validation_split=0.1 # model.save_weights('dnn_clean.h5') score = model.evaluate(teX, teY, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) with sess.as_default(): adv_sample=[]
labels = labels[index] teY_original = labels[230000:] labels = keras.utils.to_categorical(labels, num_classes=None) signals = signals[index] signals = np.expand_dims(signals, axis=2) trX = signals[:230000] trY = labels[:230000] teX = signals[230000:] teY = labels[230000:] print("Input label shape", shape(labels)) print("Input data shape", shape(signals)) model = dnn_model(input_dim=640) x = tf.placeholder(tf.float32, shape=(None, 640, 1)) y = tf.placeholder(tf.float32, shape=(None, 17)) #################################logits######################################## predictions = model(x) ###### after softmax predictions_logits = predictions.op.inputs[0] ###logits, before softmax predictions = predictions_logits #################################logits####################################### #sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999,