p.gL = 25. p.tref = 2. # Parameters for running p.timestep = 0.1 p.min_delay = 0.1 p.max_delay = 5.1 p.runtime = 500000. # Parameters for number and connections p.r0 = 1400. # excitatory input rate p.ri = 1647. # inhibitory input rate p.je = 0.015 # excitatory synaptic weight p.ji = -0.015 # inhibitory synaptic weight p.cb = ParameterRange(numpy.arange( 1., 1.001, 0.05)) # between-cell correlation of background input (NSD input) p.N = 1000 # number of daughter cells for MIP p.r = ParameterRange(numpy.arange(100., 101., 400.)) # MIP rate p.c = ParameterRange(numpy.array([0.05])) # with-pool correlation in MIP p.q = ParameterRange(numpy.arange( 0.2, 0.2501, 0.05)) # between-cell correlation of MIP input (SD input) p.edge = ParameterRange(numpy.array([0.])) # range of temporal jitter of MIP dims, labels = p.parameter_space_dimension_labels() results = numpy.empty(dims) for experiment in p.iter_inner(): name = make_name(experiment, p.range_keys()) print name model = st.Striatum() model.run(sim, experiment, name)
p.E_ex = 0. p.E_in = -70. p.ie = 0. p.cm = 500. p.gL = 25. p.tref = 2. # Parameters for running p.timestep = 0.1 p.min_delay = 0.1 p.max_delay = 5.1 p.runtime = 100000. # Parameters for number and connections p.r0 = 2000. # excitatory input rate p.ri = 1647. # inhibitory input rate p.je = 0.015 # excitatory synaptic weight p.ji = -0.015 # inhibitory synaptic weight p.cb = ParameterRange(numpy.arange(0., 1.001, 0.05)) # between-cell correlation dims, labels = p.parameter_space_dimension_labels() results = numpy.empty(dims) for experiment in p.iter_inner(): name = make_name(experiment, p.range_keys()) print name model = st.Striatum() model.run(sim, experiment, name) index = p.parameter_space_index(experiment) results[index] = 0