def test_griewank_works_fine(self): mke_griewank = MonkeyKingEvolutionV1(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) mke_griewankc = MonkeyKingEvolutionV1(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, mke_griewank, mke_griewankc)
def test_griewank_works_fine(self): fwa_griewank = FireworksAlgorithm(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) fwa_griewankc = FireworksAlgorithm(D=self.D, nFES=self.nFES, nGEN=self.nGEN, n=10, C_a=5, C_r=0.5, benchmark=Griewank(), seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, fwa_griewank, fwa_griewankc)
def setUp(self): self.D = 40 self.mkev2_custom = MonkeyKingEvolutionV2(D=self.D, nFES=1000, n=10, C_a=2, C_r=0.5, benchmark=MyBenchmark()) self.mkev2_griewank = MonkeyKingEvolutionV2(D=self.D, nFES=1000, n=10, C_a=5, C_r=0.5, benchmark=Griewank())
def test_griewank_works_fine(self): fun = Griewank().function() x = self.mkev2_griewank.run() self.assertTrue(x) self.assertAlmostEqual(fun(self.D, x[0]), x[1], delta=1e2)
r=0.5, Qmin=0.0, Qmax=2.0, benchmark=MyBenchmark()) Best = Algorithm.run() logger.info(Best) # example using predifined benchmark function # available benchmarks are: # - griewank # - rastrigin # - rosenbrock # - sphere logger.info('Running with default Griewank benchmark...') griewank = Griewank() for i in range(10): Algorithm = BatAlgorithm(D=10, NP=40, nFES=10000, A=0.5, r=0.5, Qmin=0.0, Qmax=2.0, benchmark=griewank) Best = Algorithm.run() Best = Algorithm.run() logger.info(Best) logger.info(
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from NiaPy.algorithms.modified import HybridSelfAdaptiveBatAlgorithm from NiaPy.task import StoppingTask from NiaPy.benchmarks import Griewank # we will run Bat Algorithm for 5 independent runs algo = HybridSelfAdaptiveBatAlgorithm(NP=50) for i in range(5): task = StoppingTask(D=10, nGEN=10000, benchmark=Griewank(Upper=600, Lower=-600)) best = algo.run(task) print('%s -> %s' % (best[0], best[1])) print(algo.getParameters()) # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
Ackley, Griewank, Sphere, HappyCat ) """Example demonstrating the use of NiaPy Runner.""" runner = Runner( D=40, nFES=100, nRuns=2, useAlgorithms=[ GreyWolfOptimizer(), "FlowerPollinationAlgorithm", ParticleSwarmAlgorithm(), "HybridBatAlgorithm", "SimulatedAnnealing", "CuckooSearch"], useBenchmarks=[ Ackley(), Griewank(), Sphere(), HappyCat(), "rastrigin"] ) print(runner.run(verbose=True))
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from NiaPy.algorithms.modified import SelfAdaptiveDifferentialEvolution from NiaPy.task import StoppingTask from NiaPy.benchmarks import Griewank # we will run jDE algorithm for 5 independent runs algo = SelfAdaptiveDifferentialEvolution(NP=40, F=0.5, F_l=0.0, F_u=2.0, Tao1=0.9, CR=0.5, Tao2=0.45) for i in range(5): task = StoppingTask(D=10, nFES=10000, benchmark=Griewank(Lower=-600, Upper=600), logger=True) best = algo.run(task) print('%s -> %s' % (best[0], best[1])) print(algo.getParameters()) # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from NiaPy.task import StoppingTask from NiaPy.benchmarks import Griewank from NiaPy.algorithms.basic import DifferentialEvolution # we will run Differential Evolution for 5 independent runs algo = DifferentialEvolution(NP=50, F=0.5, CR=0.9) for i in range(5): task = StoppingTask(D=10, nFES=10000, benchmark=Griewank(Lower=-600, Upper=600), logger=True) best = algo.run(task) print('%s -> %s' % (best[0], best[1])) print(algo.getParameters())
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from NiaPy.algorithms.modified import AdaptiveBatAlgorithm from NiaPy.task import StoppingTask from NiaPy.benchmarks import Griewank # we will run Bat Algorithm for 5 independent runs algo = AdaptiveBatAlgorithm() for i in range(5): task = StoppingTask(D=10, nGEN=10000, benchmark=Griewank(Lower=-600, Upper=600)) best = algo.run(task) print('%s -> %s' % (best[0], best[1])) print(algo.getParameters())
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix from NiaPy.algorithms.basic import AntColonyOptimization from NiaPy.util import StoppingTask, OptimizationType from NiaPy.benchmarks import Sphere from NiaPy.benchmarks import Ackley from NiaPy.benchmarks import Griewank # we will run Ant Colony Optimization for 5 independent runs for i in range(5): task = StoppingTask(D=10, nGEN=1000, optType=OptimizationType.MINIMIZATION, benchmark=Griewank()) algo = AntColonyOptimization(NP=40) best = algo.run(task=task) print('%s -> %s' % (best[0], best[1]))