Example #1
0
    elif args.channels == 1:
        normalize = transforms.Normalize(mean=[0.5], std=[0.5])

    # create model
    avg_pool_size = (args.avg_pooling_height, args.avg_pooling_width)
    model = densenet_multi(num_init_features=64,
                           growth_rate=32,
                           block_config=(6, 12, 24, 16),
                           num_classes=args.num_classes,
                           channels=args.channels,
                           avg_pooling_size=avg_pool_size)

    train_transforms = transforms.Compose([transforms.ToTensor(), normalize])
    val_transforms = transforms.Compose([transforms.ToTensor(), normalize])

    # create optimizer
    optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999))

    # start main loop
    main(args,
         model,
         pil_loader,
         pil_loader,
         normalize,
         train_dataset=MultiTaskDataset,
         train_model=train_model,
         validate_model=validate_model,
         train_transforms=train_transforms,
         val_transforms=val_transforms,
         optimizer=optimizer)
Example #2
0
    # create model
    avg_pool_size = (args.avg_pooling_height, args.avg_pooling_width)
    if args.pretrained:
        if args.channels != 3:
            print('(pretrained) Must fix channels == 3')
            exit()
        if args.avg_pooling_width != 7 and args.avg_pooling_height != 7:
            print('(pretrained) Must fix avg_pooling_size == 7')
            exit()
        # fix num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16)
        model = densenet121_pretrained(num_classes=args.num_classes)
    else:
        model = DenseNet(num_init_features=32, growth_rate=16, block_config=(6, 12, 24, 16),
                         num_classes=args.num_classes,
                         channels=args.channels, avg_pooling_size=avg_pool_size)

    train_transforms = transforms.Compose([transforms.RandomCrop((args.image_height, args.image_width)),
                                           transforms.ToTensor(),
                                           normalize,
                                           ])

    # create optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # start main loop
    main(args, model, train_image_loader, valid_image_loader, normalize, optimizer,
         train_dataset=TrainDataset, valid_dataset=ValDataset,
         train_model=train_model, validate_model=validate_model,
         train_transforms=train_transforms)
Example #3
0
args.image_height = 224
args.num_classes = 1000
args.channels = 3


def pil_loader(path):
    with open(path, 'rb') as f:
        with Image.open(f) as img:
            img = img.convert('RGB') if args.channels == 3 else img.convert(
                'L')
            img = img.resize(
                (args.resize_image_width, args.resize_image_height))
            return img


if __name__ == '__main__':
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    # create model
    model = models.__dict__[args.arch](num_classes=args.num_classes,
                                       pretrained=True)

    # create optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # start main loop
    main(args, model, pil_loader, pil_loader, normalize, optimizer)
    cat_dims, emb_dims = get_dims(find_csv(args.data, 'train'))

    # create model
    model = FeedForwardNN(emb_dims,
                          no_of_cont=5,
                          lin_layer_sizes=[50, 100],
                          output_size=2,
                          emb_dropout=0.04,
                          lin_layer_dropouts=[0.2, 0.2])
    # lin_layer_dropouts=[0.001, 0.01])

    # create optimizer
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)

    transforms = transforms.Compose(transforms.ToTensor())
    dumy = lambda x: x

    # start main loop
    main(args,
         model,
         dummyImageLoader,
         dummyImageLoader,
         None,
         optimizer,
         train_dataset=DummyDataset,
         valid_dataset=DummyDataset,
         train_model=train_model,
         validate_model=validate_model,
         train_transforms=dumy,
         val_transforms=dumy)
Example #5
0
if __name__ == '__main__':
    if args.channels == 3:
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
    elif args.channels == 1:
        normalize = transforms.Normalize(mean=[0.5], std=[0.5])

    # create model
    avg_pool_size = (args.avg_pooling_height, args.avg_pooling_width)
    if args.simple_resnet:
        model = resnet18(num_classes=args.num_classes,
                         channels=args.channels,
                         avg_pooling_size=avg_pool_size)
    else:
        model = densenet121(num_classes=args.num_classes,
                            channels=args.channels,
                            avg_pooling_size=avg_pool_size)

    train_transforms = transforms.Compose([transforms.ToTensor(), normalize])
    val_transforms = transforms.Compose([transforms.ToTensor(), normalize])

    # start main loop
    main(args,
         model,
         pil_loader,
         pil_loader,
         normalize,
         validate_model=validate_model,
         train_transforms=train_transforms,
         val_transforms=val_transforms)