def get_optional_params(): return dict(DataLayer.get_optional_params(), **{ 'num_parallel_calls': int, 'shuffle_buffer': int, 'image_size': int, 'num_classes': int, })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'num_audio_features': int, 'input_type': ['spectrogram', 'mfcc', 'logfbank'], 'vocab_file': str, 'dataset_files': list, })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'lm_vocab_file': str, 'shuffle': bool, 'repeat': bool, 'max_length': int, 'processed_data_folder': str, })
def get_optional_params(): return dict( DataLayer.get_optional_params(), **{ 'repeat': int, 'num_cpu_cores': int, 'tgt_vocab_file': str, 'pad_data_to_eight': bool, 'batch_in_tokens': bool, })
def get_optional_params(): return dict( DataLayer.get_optional_params(), **{ 'augmentation': dict, 'pad_to': int, 'max_duration': float, 'bpe': bool, 'autoregressive': bool, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'source_file': str, 'src_vocab_file': str, 'tgt_vocab_file': str, 'max_length': int, 'shuffle': bool, 'repeat': bool, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ "dataset_files": list, "dataset_location": str, "num_audio_features": int, "audio_length": int, "num_labels": int, "model_format": str })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'data_dir': str, 'file_pattern': str, 'src_vocab_file': str, 'batch_size': int, 'max_length': int, 'shuffle': bool, "delimiter": str, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'dataset_location': str, 'dataset': ['LJ', 'MAILABS'], 'num_audio_features': None, 'output_type': ['magnitude', 'mel', 'both'], 'vocab_file': str, 'dataset_files': list, 'feature_normalize': bool, } )
def get_optional_params(): return dict(DataLayer.get_optional_params(), **{ 'augmentation': dict, 'pad_to': int, 'max_duration': float, 'bpe': bool, 'autoregressive': bool, 'syn_enable': bool, 'syn_subdirs': list, 'window_size': float, 'window_stride': float, })
def get_optional_params(): return dict( DataLayer.get_optional_params(), **{ 'use_targets': bool, 'delimiter': str, 'target_file': str, 'map_parallel_calls': int, 'prefetch_buffer_size': int, 'pad_lengths_to_eight': bool, 'pad_vocab_to_eight': bool, 'shuffle_buffer_size': int, 'special_tokens_already_in_vocab': bool, 'use_start_token': bool, })
def get_optional_params(): return dict(DataLayer.get_optional_params(), **{ 'data_root': str, 'rand_start': bool, 'small': bool, 'use_targets': bool, 'delimiter': str, 'map_parallel_calls': int, 'prefetch_buffer_size': int, 'pad_lengths_to_eight': bool, 'pad_vocab_to_eight': bool, 'seed_tokens': str, 'shuffle_buffer_size': int, 'processed_data_folder': str, })
def get_optional_params(): return dict(DataLayer.get_optional_params(), **{ 'rand_start': bool, 'small': bool, 'use_targets': bool, 'delimiter': str, 'map_parallel_calls': int, 'prefetch_buffer_size': int, 'pad_lengths_to_eight': bool, 'pad_vocab_to_eight': bool, 'shuffle_buffer_size': int, 'data_root': str, 'binary': bool, 'num_classes': int, 'get_stats': bool, })
def get_optional_params(): return dict( DataLayer.get_optional_params(), **{ 'pad_to': int, 'mag_power': int, 'pad_EOS': bool, 'pad_value': float, 'feature_normalize_mean': float, 'feature_normalize_std': float, 'trim': bool, 'data_min': None, 'duration_min': int, 'duration_max': int, 'mel_type': ['slaney', 'htk'], "exp_mag": bool } )
def get_optional_params(): return dict(DataLayer.get_optional_params(), **{"dataset_location": str})
def get_required_params(): return dict(DataLayer.get_required_params(), **{ "num_audio_features": int, "dataset_files": list })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'data_dir': str, })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'repeat': bool, 'bptt': int, })
def get_optional_params(): return dict(DataLayer.get_optional_params(), **{ "cache_data": bool, "augment_data": bool })