Example #1
0
    def test_array_not_equal(self, array):
        a1 = array([[0., 2.], [3., np.nan]])
        a2 = array([[0., 2.], [4., np.nan]])
        self.assertFalse(array_equal(a1, a2))

        a3 = array([[0., 2.], [3., np.nan], [4., 5.]])
        self.assertFalse(array_equal(a1, a3))
Example #2
0
    def test_csc_scr_equal(self):
        a1 = sp.csc_matrix(([1, 4, 5], ([0, 0, 1], [0, 2, 2])), shape=(2, 3))
        a2 = sp.csr_matrix(([5, 1, 4], ([1, 0, 0], [2, 0, 2])), shape=(2, 3))
        self.assertTrue(array_equal(a1, a2))

        a1 = sp.csc_matrix(([1, 4, 5], ([0, 0, 1], [0, 2, 2])), shape=(2, 3))
        a2 = sp.csr_matrix(([1, 4, 5], ([0, 0, 1], [0, 2, 2])), shape=(2, 3))
        self.assertTrue(array_equal(a1, a2))
Example #3
0
    def test_array_equal(self, array):
        a1 = array([[0., 2.], [3., np.nan]])
        a2 = array([[0., 2.], [3., np.nan]])
        self.assertTrue(array_equal(a1, a2))

        a3 = np.array([[0., 2.], [3., np.nan]])
        self.assertTrue(array_equal(a1, a3))
        self.assertTrue(array_equal(a3, a1))
Example #4
0
    def set_data(self, data):
        self.data, old_data = data, self.data

        # Do not needlessly recluster the data if X hasn't changed
        if old_data and self.data and array_equal(self.data.X, old_data.X):
            if self.auto_commit:
                self.send_data()
        else:
            self.invalidate()
Example #5
0
    def _initialize(self):
        matrix_existed = self.effective_matrix is not None
        effective_matrix = self.effective_matrix
        self._invalidated = True
        self.data = None
        self.effective_matrix = None
        self.closeContext()
        self.clear_messages()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is not None \
                    and self.data is self.matrix_data:
                names = [[attr.name] for attr in self.data.domain.attributes]
                domain = Domain([], metas=[StringVariable("labels")])
                self.data = Table(domain, names)
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            self.clear()
            self.init_attr_values()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self._invalidated = not (matrix_existed and
                                 self.effective_matrix is not None and
                                 array_equal(effective_matrix, self.effective_matrix))
        if self._invalidated:
            self.clear()
        self.graph.set_effective_matrix(self.effective_matrix)
Example #6
0
    def _initialize(self):
        matrix_existed = self.effective_matrix is not None
        effective_matrix = self.effective_matrix
        self._invalidated = True
        self.data = None
        self.effective_matrix = None
        self.closeContext()
        self.clear_messages()

        # if no data nor matrix is present reset plot
        if self.signal_data is None and self.matrix is None:
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None and self.matrix is not None and \
                len(self.signal_data) != len(self.matrix):
            self.Error.mismatching_dimensions()
            self.clear()
            self.init_attr_values()
            return

        if self.signal_data is not None:
            self.data = self.signal_data
        elif self.matrix_data is not None:
            self.data = self.matrix_data

        if self.matrix is not None:
            self.effective_matrix = self.matrix
            if self.matrix.axis == 0 and self.data is not None \
                    and self.data is self.matrix_data:
                names = [[attr.name] for attr in self.data.domain.attributes]
                domain = Domain([], metas=[StringVariable("labels")])
                self.data = Table.from_list(domain, names)
        elif self.data.domain.attributes:
            preprocessed_data = MDS().preprocess(self.data)
            self.effective_matrix = Euclidean(preprocessed_data)
        else:
            self.Error.no_attributes()
            self.clear()
            self.init_attr_values()
            return

        self.init_attr_values()
        self.openContext(self.data)
        self._invalidated = not (
            matrix_existed and self.effective_matrix is not None
            and array_equal(effective_matrix, self.effective_matrix))
        if self._invalidated:
            self.clear()
        self.graph.set_effective_matrix(self.effective_matrix)
 def set_data(self, data):
     attr_x, attr_y = self.attr_x, self.attr_y
     data_existed = self.reference_data is not None
     effective_data = self.effective_data if data_existed else None
     super().set_data(data)
     self.reference_data = self.data
     if not (data_existed and self.reference_data is not None
             and array_equal(effective_data.X, self.effective_data.X)):
         self.clear()
         self.__invalidate_scores()
         self.__invalidate_clusters()
     elif attr_x is not self.attr_x or attr_y is not self.attr_y:
         self.clear()
         self.__invalidate_clusters()
Example #8
0
    def set_data(self, data):
        self.data, old_data = data, self.data
        self.selection = None
        self._set_input_summary()

        self.controls.normalize.setDisabled(
            bool(self.data) and sp.issparse(self.data.X))

        # Do not needlessly recluster the data if X hasn't changed
        if old_data and self.data and array_equal(self.data.X, old_data.X):
            if self.auto_commit:
                self.send_data()
        else:
            self.invalidate(unconditional=True)
Example #9
0
 def set_data(self, data):
     data_existed = self.data is not None
     effective_data = self.effective_data if data_existed else None
     same_domain = (data_existed and data is not None and
                    data.domain.checksum() == self.data.domain.checksum())
     self.closeContext()
     self.data = data
     self.check_data()
     if not same_domain:
         self.init_attr_values()
     self.openContext(self.data)
     self._invalidated = not (
         data_existed and self.data is not None and
         array_equal(effective_data.X, self.effective_data.X))
     if self._invalidated:
         self.clear()
     self.enable_controls()
Example #10
0
    def set_data(self, data):
        self.closeContext()
        self.Error.clear()

        prev_data, self.data = self.data, data
        self.openContext(self.data)
        # Make sure to properly enable/disable slider based on `apply_pca` setting
        self.controls.pca_components.setEnabled(self.apply_pca)

        if prev_data and self.data and array_equal(prev_data.X, self.data.X):
            if self.auto_commit:
                self._send_data()
            return

        # Clear the outputs
        self.Outputs.annotated_data.send(None)
        if Graph is not None:
            self.Outputs.graph.send(None)

        # Clear internal state
        self.clear()
        self._invalidate_pca_projection()

        # Make sure the dataset is ok
        if self.data is not None and len(self.data.domain.attributes) < 1:
            self.Error.empty_dataset()
            self.data = None

        if self.data is None:
            return

        # Can't have more PCA components than the number of attributes
        n_attrs = len(data.domain.attributes)
        self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS,
                                                  n_attrs))
        self.pca_components_slider.setValue(
            min(_DEFAULT_PCA_COMPONENTS, n_attrs))
        # Can't have more k neighbors than there are data points
        self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1))
        self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS,
                                           len(data) - 1))

        self.info_label.setText("Clustering not yet run.")

        self.commit()
    def set_data(self, data):
        self.closeContext()
        self.Error.clear()

        prev_data, self.data = self.data, data
        self.openContext(self.data)
        # Make sure to properly enable/disable slider based on `apply_pca` setting
        self.controls.pca_components.setEnabled(self.apply_pca)

        if prev_data and self.data and array_equal(prev_data.X, self.data.X):
            if self.auto_commit:
                self._send_data()
            return

        # Clear the outputs
        self.Outputs.annotated_data.send(None)
        if Graph is not None:
            self.Outputs.graph.send(None)

        # Clear internal state
        self.clear()
        self._invalidate_pca_projection()

        # Make sure the dataset is ok
        if self.data is not None and len(self.data.domain.attributes) < 1:
            self.Error.empty_dataset()
            self.data = None

        if self.data is None:
            return

        # Can't have more PCA components than the number of attributes
        n_attrs = len(data.domain.attributes)
        self.pca_components_slider.setMaximum(min(_MAX_PCA_COMPONENTS, n_attrs))
        self.pca_components_slider.setValue(min(_DEFAULT_PCA_COMPONENTS, n_attrs))
        # Can't have more k neighbors than there are data points
        self.k_neighbors_spin.setMaximum(min(_MAX_K_NEIGBOURS, len(data) - 1))
        self.k_neighbors_spin.setValue(min(_DEFAULT_K_NEIGHBORS, len(data) - 1))

        self.info_label.setText("Clustering not yet run.")

        self.commit()
Example #12
0
    def set_data(self, data):
        data_existed = self.data is not None
        effective_data = self.effective_data if data_existed else None

        self.closeContext()
        self.data = data
        self.agg_func = DEFAULT_AGG_FUNC
        self.Warning.no_region.clear()
        self.Warning.no_lat_lon_vars.clear()
        self.init_attr_values()
        self.openContext(self.data)

        if not (data_existed and self.data is not None and
                array_equal(effective_data.X, self.effective_data.X)):
            self.clear(cache=True)
            self.input_changed.emit(data)
            self.setup_plot()
        self.update_agg()
        self.apply_selection()
        self.unconditional_commit()
Example #13
0
 def test_csc_unordered_array_equal(self):
     a1 = sp.csc_matrix(([1, 4, 5], [0, 0, 1], [0, 1, 1, 3]), shape=(2, 3))
     a2 = sp.csc_matrix(([1, 5, 4], [0, 1, 0], [0, 1, 1, 3]), shape=(2, 3))
     self.assertTrue(array_equal(a1, a2))
Example #14
0
 def test_csc_unordered_array_equal(self):
     a1 = sp.csc_matrix(([1, 4, 5], [0, 0, 1], [0, 1, 1, 3]), shape=(2, 3))
     a2 = sp.csc_matrix(([1, 5, 4], [0, 1, 0], [0, 1, 1, 3]), shape=(2, 3))
     self.assertTrue(array_equal(a1, a2))
Example #15
0
 def test_csc_array_equal(self):
     a1 = sp.csc_matrix(([1, 4, 5], ([0, 0, 1], [0, 2, 2])), shape=(2, 3))
     a2 = sp.csc_matrix(([5, 1, 4], ([1, 0, 0], [2, 0, 2])), shape=(2, 3))
     a2[0, 1] = 0  # explicitly setting to 0
     self.assertTrue(array_equal(a1, a2))
Example #16
0
    def set_data(self, data):
        def prepare_data():
            if len(cont_attrs) < len(attrs):
                self.Warning.ignoring_disc_variables()
            if len(cont_attrs) == 1:
                self.Warning.single_attribute()
            x = Table.from_table(Domain(cont_attrs), data).X
            if sp.issparse(x):
                self.data = data
                self.cont_x = x.tocsr()
            else:
                mask = np.all(np.isfinite(x), axis=1)
                if not np.any(mask):
                    self.Error.no_defined_rows()
                else:
                    if np.all(mask):
                        self.data = data
                        self.cont_x = x.copy()
                    else:
                        self.data = data[mask]
                        self.cont_x = x[mask]
                    self.cont_x -= np.min(self.cont_x, axis=0)[None, :]
                    sums = np.sum(self.cont_x, axis=0)[None, :]
                    sums[sums == 0] = 1
                    self.cont_x /= sums

        def set_warnings():
            missing = len(data) - len(self.data)
            if missing == 1:
                self.Warning.missing_values(1, "", "is")
            elif missing > 1:
                self.Warning.missing_values(missing, "s", "are")

        cont_x = self.cont_x.copy() if self.cont_x is not None else None
        self.data = self.cont_x = None
        self.closeContext()
        self.clear_messages()

        if data is not None:
            attrs = data.domain.attributes
            cont_attrs = [var for var in attrs if var.is_continuous]
            if not cont_attrs:
                self.Error.no_numeric_variables()
            else:
                prepare_data()

        invalidated = cont_x is None or self.cont_x is None \
            or not array_equal(cont_x, self.cont_x)
        if invalidated:
            self.stop_optimization_and_wait()
            self.clear()

        if self.data is not None:
            self.controls.attr_color.model().set_domain(data.domain)
            self.attr_color = data.domain.class_var
            set_warnings()

        self.openContext(self.data)
        self.set_color_bins()
        self.create_legend()
        if invalidated:
            self.recompute_dimensions()
            self.start_som()
        else:
            self._redraw()