def apply_ridge(self):
        if self.use_ridge:
            learner = linear.LinearRegressionLearner(
                name=self.name, ridgeLambda=self.ridge_lambda)
        else:
            learner = linear.LinearRegressionLearner(name=self.name)
        predictor = None
        if self.preprocessor:
            learner = self.preprocessor.wrapLearner(learner)

        self.error(0)
        if self.data is not None:
            try:
                predictor = learner(self.data)
                predictor.name = self.name
            except Exception, ex:
                self.error(0, "An error during learning: %r" % ex)
Example #2
0
    def apply(self):
        if self.reg_type == OWLinearRegression.OLS:
            learner = linear.LinearRegressionLearner()
        elif self.reg_type == OWLinearRegression.Ridge:
            learner = linear.RidgeRegressionLearner(alpha=self.ridgealpha)
        elif self.reg_type == OWLinearRegression.Lasso:
            learner = linear.RidgeRegressionLearner(alpha=self.lassoalpha)
        else:
            assert False

        learner.name = self.learner_name
        predictor = None
        if self.data is not None:
            predictor = learner(self.data)
            predictor.name = self.learner_name

        self.send("Learner", learner)
        self.send("Predictor", predictor)
import Orange
from Orange.regression import linear
from Orange.data import Table
from Orange.evaluation import scoring, testing

#data operations
data = Table("auto-mpg.tab")
#set up linear regressions
##regularizations
Linear = linear.LinearRegressionLearner(preprocessors=None)
Linear.name = "No regularization"

Ridge = linear.RidgeRegressionLearner(alpha=0.0001,
                                      fit_intercept=True,
                                      normalize=False,
                                      copy_X=True,
                                      max_iter=None,
                                      tol=0.001,
                                      solver='auto',
                                      preprocessors=None)
Ridge.name = "Ridge Regression(L2)"

Lasso = linear.LassoRegressionLearner(alpha=1.0,
                                      fit_intercept=True,
                                      normalize=False,
                                      precompute=False,
                                      copy_X=True,
                                      max_iter=1000,
                                      tol=0.0001,
                                      warm_start=False,
                                      positive=False,
Example #4
0
 def setUp(self):
     self.learner = linear.LinearRegressionLearner(ridge_lambda=2)
Example #5
0
 def setUp(self):
     self.learner = linear.LinearRegressionLearner()