def F_from_ransac(x1, x2, model, maxiter=5000, match_threshold=1e-3): """ Robust estimation of a fundamental matrix F from point correspondences using RANSAC (ransac.py from http://www.scipy.org/Cookbook/RANSAC). input: x1, x2 (3*n arrays) points in hom. coordinates. """ import PCV.tools.ransac as ransac data = np.vstack((x1, x2)) d = 20 # 20 is the original F, ransac_data = ransac.ransac(data.T, model, 18, maxiter, match_threshold, d, return_all=True) return F, ransac_data['inliers']
def F_from_ransac(x1, x2, model, maxiter=5000, match_threshold=1e-6): """ 使用RANSAC从点对应中稳健估计基本矩阵F. (来自http://www.scipy.org/Cookbook/RANSAC的ransac.py)。 input: x1, x2 (3*n arrays) points in hom. coordinates. """ from PCV.tools import ransac data = np.vstack((x1, x2)) d = 10 # 20 is the original # 计算F并返回inlier索引 F, ransac_data = ransac.ransac(data.T, model, 8, maxiter, match_threshold, d, return_all=True) return F, ransac_data['inliers']
def F_from_ransac(x1,x2,model,maxiter=5000,match_theshold=1e-6): """ Robust estimation of a fundamental matrix F from point correspondences using RANSAC (ransac.py from http://www.scipy.org/Cookbook/RANSAC). input: x1,x2 (3*n arrays) points in hom. coordinates. """ from PCV.tools import ransac data = vstack((x1,x2)) # compute F and return with inlier index F,ransac_data = ransac.ransac(data.T,model,8,maxiter,match_theshold,20,return_all=True) return F, ransac_data['inliers']
def H_from_ransac(fp,tp,model,maxiter=1000,match_theshold=10): """ Robust estimation of homography H from point correspondences using RANSAC (ransac.py from http://www.scipy.org/Cookbook/RANSAC). input: fp,tp (3*n arrays) points in hom. coordinates. """ from PCV.tools import ransac # group corresponding points data = vstack((fp,tp)) # compute H and return H,ransac_data = ransac.ransac(data.T,model,4,maxiter,match_theshold,10,return_all=True) return H,ransac_data['inliers']
def H_from_ransac(fp, tp, model, maxiter=1000, match_theshold=10): """ Robust estimation of homography H from point correspondences using RANSAC (ransac.py from http://www.scipy.org/Cookbook/RANSAC). input: fp,tp (3*n arrays) points in hom. coordinates. """ from PCV.tools import ransac # group corresponding points data = vstack((fp, tp)) # compute H and return H, ransac_data = ransac.ransac(data.T, model, 4, maxiter, match_theshold, 10, return_all=True) return H, ransac_data['inliers']