def part_image(image_path): image = cv2.imread(image_path) width = image.shape[0] height = image.shape[1] bin_array = np.zeros((width, height), np.uint8) img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) U, T = rof.denoise(img, img, tolerance=0.001) t = 0.8 # flower32_t0 threshold seg_im = U < t * U.max() for wid in range(0, width): for hei in range(0, height): bin_array[wid][hei] = cvt(seg_im[wid][hei]) * img[wid][hei] cv2.imshow("image", bin_array) cv2.waitKey(0) return bin_array
from PIL import Image from numpy import * from scipy.misc import imsave from PCV.tools import rof """ Simple example of Chan-Vese segmentation from Section 9.3. Load an image, segment in two classes and save result. """ im = array(Image.open('../data/houses.png').convert('L')) U,T = rof.denoise(im,im,tolerance=0.001) t = 0.4 imsave('result.pdf',U < t*U.max())
from PIL import Image from pylab import * import numpy as np from scipy.ndimage import filters from PCV.tools import rof im = np.asarray(Image.open('1.jpeg').convert('L')) U, T = rof.denoise(im, im) G = filters.gaussian_filter(im, 3) figure() gray() subplot(131) imshow(im) subplot(132) imshow(G) subplot(133) imshow(U) show()
from MVR import stereo from PIL import Image import numpy # import rof from PCV.tools import rof im_l = numpy.array( Image.open('dataset_tsukuba/scene1.row3.col3.ppm').convert('L'), 'f') im_r = numpy.array( Image.open('dataset_tsukuba/scene1.row3.col4.ppm').convert('L'), 'f') steps = 15 start = 1 wid = 3 res = stereo.plane_sweep_gauss(im_l, im_r, start, steps, wid) res, _ = rof.denoise(res, res, tv_weight=80 / 255.0, tolerance=0.01) import scipy.misc scipy.misc.imsave('dataset_tsukuba/out_depth_rof.png', res)
from pylab import * from numpy import * from numpy import random from scipy.ndimage import filters from scipy.misc import imsave from PCV.tools import rof """ This is the de-noising example using ROF in Section 1.5. """ # 添加中文字体支持 from matplotlib.font_manager import FontProperties font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14) im = array(Image.open('../data/empire.jpg').convert('L')) U,T = rof.denoise(im,im) G = filters.gaussian_filter(im,10) # save the result #imsave('synth_original.pdf',im) #imsave('synth_rof.pdf',U) #imsave('synth_gaussian.pdf',G) # plot figure() gray() subplot(1,3,1) imshow(im)
from PCV.tools import rof from pylab import * from PIL import Image import scipy.misc #im = array(Image.open('../data/ceramic-houses_t0.png').convert("L")) im = array(Image.open('../data/flower32_t0.png').convert("L")) figure() gray() subplot(131) axis('off') imshow(im) U, T = rof.denoise(im, im, tolerance=0.001) subplot(132) axis('off') imshow(U) #t = 0.4 # ceramic-houses_t0 threshold t = 0.8 # flower32_t0 threshold seg_im = U < t * U.max() #scipy.misc.imsave('ceramic-houses_t0_result.pdf', seg_im) scipy.misc.imsave('flower32_t0_result.pdf', seg_im) subplot(133) axis('off') imshow(seg_im) show()