Example #1
0
class PPO:
    def __init__(self, state_dim, action_dim, cfg):
        self.env_name = cfg.env_name
        self.gamma = cfg.gamma
        self.policy_clip = cfg.policy_clip
        self.n_epochs = cfg.n_epochs
        self.gae_lambda = cfg.gae_lambda
        self.device = cfg.device
        self.actor = Actor(state_dim, action_dim).to(self.device)
        self.critic = Critic(state_dim).to(self.device)
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
        self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
        self.memory = PPOMemory(cfg.batch_size)

    def choose_action(self, observation):
        state = torch.tensor([observation], dtype=torch.float).to(self.device)
        dist = self.actor(state)
        value = self.critic(state)
        action = dist.sample()
        probs = torch.squeeze(dist.log_prob(action)).item()
        action = torch.squeeze(action).item()
        value = torch.squeeze(value).item()
        return action, probs, value

    def update(self):
        for _ in range(self.n_epochs):
            state_arr, action_arr, old_prob_arr, vals_arr,\
            reward_arr, dones_arr, batches = \
                    self.memory.sample()
            values = vals_arr
            ### compute advantage ###
            advantage = np.zeros(len(reward_arr), dtype=np.float32)
            for t in range(len(reward_arr) - 1):
                discount = 1
                a_t = 0
                for k in range(t, len(reward_arr) - 1):
                    a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
                            (1-int(dones_arr[k])) - values[k])
                    discount *= self.gamma * self.gae_lambda
                advantage[t] = a_t
            advantage = torch.tensor(advantage).to(self.device)
            ### SGD ###
            values = torch.tensor(values).to(self.device)
            for batch in batches:
                states = torch.tensor(state_arr[batch],
                                      dtype=torch.float).to(self.device)
                old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
                actions = torch.tensor(action_arr[batch]).to(self.device)
                dist = self.actor(states)
                critic_value = self.critic(states)
                critic_value = torch.squeeze(critic_value)
                new_probs = dist.log_prob(actions)
                prob_ratio = new_probs.exp() / old_probs.exp()
                weighted_probs = advantage[batch] * prob_ratio
                weighted_clipped_probs = torch.clamp(
                    prob_ratio, 1 - self.policy_clip,
                    1 + self.policy_clip) * advantage[batch]
                actor_loss = -torch.min(weighted_probs,
                                        weighted_clipped_probs).mean()
                returns = advantage[batch] + values[batch]
                critic_loss = (returns - critic_value)**2
                critic_loss = critic_loss.mean()
                total_loss = actor_loss + 0.5 * critic_loss
                self.actor_optimizer.zero_grad()
                self.critic_optimizer.zero_grad()
                total_loss.backward()
                self.actor_optimizer.step()
                self.critic_optimizer.step()
        self.memory.clear()

    def save(self, path):
        actor_checkpoint = os.path.join(path, self.env_name + '_actor.pt')
        critic_checkpoint = os.path.join(path, self.env_name + '_critic.pt')
        torch.save(self.actor.state_dict(), actor_checkpoint)
        torch.save(self.critic.state_dict(), critic_checkpoint)

    def load(self, path):
        actor_checkpoint = os.path.join(path, self.env_name + '_actor.pt')
        critic_checkpoint = os.path.join(path, self.env_name + '_critic.pt')
        self.actor.load_state_dict(torch.load(actor_checkpoint))
        self.critic.load_state_dict(torch.load(critic_checkpoint))
Example #2
0
class PPO:
    def __init__(self, state_dim, action_dim, cfg):
        self.env = cfg.env
        self.gamma = cfg.gamma
        self.policy_clip = cfg.policy_clip
        self.gae_lambda = cfg.gae_lambda
        self.n_epochs = cfg.n_epochs
        self.device = cfg.device
        self.loss = 0
        self.actor = Actor(state_dim, action_dim,
                           cfg.hidden_dim).to(cfg.device)
        self.critic = Critic(state_dim, cfg.hidden_dim).to(cfg.device)
        self.actor_optimizer = optim.Adam(self.actor.parameters(),
                                          cfg.actor_lr)
        self.critic_optimizer = optim.Adam(self.critic.parameters(),
                                           cfg.actor_lr)
        self.memory = PPOMemory(cfg.batch_size)

    def choose_action(self, observation):
        state = torch.tensor(observation, dtype=torch.float).to(self.device)
        dist = self.actor(state)  # 返回的是根据网络输出的动作概率的一个分布,用来抽样要执行的动作
        value = self.critic(state)
        action = dist.sample()
        ln_probs = dist.log_prob(action).item()
        value = value.item()
        action = action.item()
        return action, ln_probs, value

    def update(self):
        for _ in range(self.n_epochs):  # 本批数据的使用次数
            # 从经验池中提取数据
            state_arr, reward_arr, action_arr, dones_arr, old_prob_arr, vals_arr, batches = self.memory.sample(
            )
            values = vals_arr

            # 计算Advantage
            # ''' 顺序计算Advantage'''
            # advantage1 = np.zeros(len(reward_arr), dtype=np.float32)
            # for t in range(len(reward_arr)-1): # 倒序可能会更加单,后期可以改一个倒叙版本,len(reward_arr)-1的原因是下边的k+1
            #     discount =1
            #     a_t = 0
            #     for k in range(t, len(reward_arr)-1):
            #         a_t += discount*(reward_arr[k]+self.gamma*values[k+1]*(1-int(dones_arr[k]))-values[k])
            #         discount *= self.gamma*self.gae_lambda
            #     advantage1[t] = a_t
            # advantage1 = torch.tensor(advantage1).to(self.device)
            '''倒序版本计算Advantage'''
            advantage = np.zeros(len(reward_arr), dtype=np.float32)
            a_t = 0
            for t in reversed(range(len(reward_arr) - 1)):
                a_t = reward_arr[t] + self.gamma * values[t + 1] * (
                    1 - int(dones_arr[t])
                ) - values[t] + self.gamma * self.gae_lambda * a_t
                advantage[t] = a_t
            advantage = torch.tensor(advantage).to(self.device)

            # 梯度下降SGD
            values = torch.tensor(values).to(self.device)
            for batch in batches:  # iteration过程,每个循环的一遍,一次参数更新。用minibatch时就意味着train完一个batch
                # 将经验池中提取的数据放到GPU
                states = torch.tensor(state_arr[batch],
                                      dtype=torch.float).to(self.device)
                old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
                actions = torch.tensor(action_arr[batch]).to(self.device)

                # 产生本批数据当前策略下的动作概率分布,并计算actor_loss 即actor的目标函数
                dist = self.actor(
                    states)  # 需要测试一下此处的dist与new_probs.exp()的值是否一致
                new_probs = dist.log_prob(actions)
                prob_ratio = new_probs.exp() / old_probs.exp()
                weighted_probs = advantage[batch] * prob_ratio  # 此处采用ppo-clip算法
                weighted_clipped_probs = advantage[batch] * torch.clamp(
                    prob_ratio, 1 - self.policy_clip, 1 + self.policy_clip)
                actor_loss = -torch.min(
                    weighted_probs,
                    weighted_clipped_probs).mean()  # 计算批大小为5的数据的损失函数

                # 产生当前critic下的价值,并计算critic_loss
                critic_value = self.critic(states)  # 计算出当前critic的价值
                returns = advantage[batch] + values[
                    batch]  # 按照dueling q-learning中优势函数加上状态价值函数得到动作价值函数Q
                critic_loss = (returns - critic_value)**2
                critic_loss = critic_loss.mean()
                total_loss = actor_loss + 0.5 * critic_loss
                self.loss = total_loss
                self.actor_optimizer.zero_grad()
                self.critic_optimizer.zero_grad()
                total_loss.backward()
                self.actor_optimizer.step()
                self.critic_optimizer.step()
        self.memory.clear()  # 该批数据利用完后清除

    def save(self, path):
        actor_checkpoint = os.path.join(path, self.env + '_actor.pt')
        critic_checkpoint = os.path.join(path, self.env + '_critic.pt')
        torch.save(self.actor.state_dict(), actor_checkpoint)
        torch.save(self.critic.state_dict(), critic_checkpoint)

    def load(self, path):
        actor_checkpoint = os.path.join(path, self.env + '_actor.pt')
        critic_checkpoint = os.path.join(path, self.env + '_critic.pt')
        self.actor.load_state_dict(torch.load(actor_checkpoint))
        self.critic.load_state_dict(torch.load(critic_checkpoint))