def analyseFile(filename): print(filename) seriesName = os.path.splitext(os.path.split(filename)[-1])[0] PL.ExtendContext({'seriesName': seriesName}) try: pipe = Pipeline(filename) except RuntimeError: print(('Error opening %s' % filename)) PL.PopContext() return #only look at first 7k frames #pipe.filterKeys['t'] = (0, 7000) pipe.Rebuild() autoDrift.correctDrift(pipe) imb = visHelpers.ImageBounds.estimateFromSource(pipe) jitVals = 1.0 * pipe['error_x'] im = visHelpers.rendJitTriang(pipe['x'], pipe['y'], 20, jitVals, 1, imb, 5) pipe.CloseFiles() PL.PopContext()
def colfcnwrap(pipeline): colourFilter = pipeline.colourFilter metadata = pipeline.mdh chans = colourFilter.getColourChans() if USE_GUI: figure(os.path.split(pipeline.filename)[-1] + ' - ' + fcn.__name__) if len(chans) == 0: fcn(colourFilter, metadata) else: curChan = colourFilter.currentColour if 'rng' in args: nPh = getPhotonNums(colourFilter, metadata) rng = 6 * nPh.mean() chanNames = chans[:] if 'Sample.Labelling' in metadata.getEntryNames(): lab = metadata.getEntry('Sample.Labelling') for i in range(len(lab)): if lab[i][0] in chanNames: chanNames[chanNames.index(lab[i][0])] = lab[i][1] for ch, i in zip(chans, range(len(chans))): colourFilter.setColour(ch) PL.ExtendContext({'chan': chanNames[i]}) if 'rng' in args: fcn(colourFilter, metadata, chanNames[i], i, rng) else: fcn(colourFilter, metadata, chanNames[i], i) PL.PopContext() colourFilter.setColour(curChan)
def analyseFile(filename): print(filename) seriesName = os.path.splitext(os.path.split(filename)[-1])[0] PL.ExtendContext({'seriesName':seriesName}) try: pipe = Pipeline(filename) except RuntimeError: print(('Error opening %s' % filename)) PL.PopContext() return #only look at first 7k frames pipe.filterKeys['t'] = (0, 7000) pipe.Rebuild() trackUtils.findTracks(pipe, 'error_x', 2, 20) pipe.Rebuild() extraParams = {} extraParams['cycleTime'] = pipe.mdh['Camera.CycleTime'] nPhot = kinModels.getPhotonNums(pipe.colourFilter, pipe.mdh) extraParams['MedianPhotons'] = np.median(nPhot) extraParams['MeanPhotons'] = np.mean(nPhot) extraParams['NEvents'] = len(nPhot) extraParams['MeanBackground'] = pipe['fitResults_background'].mean() - pipe.mdh['Camera.ADOffset'] extraParams['MedianBackground'] = np.median(pipe['fitResults_background']) - pipe.mdh['Camera.ADOffset'] extraParams['MeanClumpSize'] = pipe['clumpSize'].mean() extraParams['MeanClumpPhotons'] = (pipe['clumpSize']*nPhot).mean() PL.AddRecord('/Photophysics/ExtraParams', dictToRecarray(extraParams)) kinModels.fitDecay(pipe) kinModels.fitFluorBrightness(pipe) #kinModels.fitFluorBrightnessT(pipe) #max_off_ts = [3,5,10,20,40] #max_off_ts = [20] #for ot in max_off_ts: #PL.ExtendContext({'otMax':ot}) #find molecules appearing across multiple frames kinModels.fitOnTimes(pipe) #PL.PopContext() pipe.CloseFiles() PL.PopContext()