def rendJitTriang(x, y, n, jsig, mcp, imageBounds, pixelSize):
        sizeX = int((imageBounds.x1 - imageBounds.x0) / pixelSize)
        sizeY = int((imageBounds.y1 - imageBounds.y0) / pixelSize)

        im = shmarray.zeros((sizeX, sizeY))

        x = shmarray.create_copy(x)
        y = shmarray.create_copy(y)
        if type(jsig) == numpy.ndarray:
            jsig = shmarray.create_copy(jsig)

        nCPUs = multiprocessing.cpu_count()

        tasks = (n / nCPUs) * numpy.ones(nCPUs, 'i')
        tasks[:(n % nCPUs)] += 1

        processes = [
            multiprocessing.Process(target=rendJitTri,
                                    args=(im, x, y, jsig, mcp, imageBounds,
                                          pixelSize, nIt)) for nIt in tasks
        ]

        for p in processes:
            p.start()

        for p in processes:
            p.join()

        return im / n
def rendJitTriang2(x,y,n,jsig, mcp, imageBounds, pixelSize):
    sizeX = int((imageBounds.x1 - imageBounds.x0) / pixelSize)
    sizeY = int((imageBounds.y1 - imageBounds.y0) / pixelSize)
    
    if multiProc and not multiprocessing.current_process().daemon:
        im = shmarray.zeros((sizeX, sizeY))
        im1 = shmarray.zeros((sizeX, sizeY))

        x = shmarray.create_copy(x)
        y = shmarray.create_copy(y)
        if type(jsig) == np.ndarray:
            jsig = shmarray.create_copy(jsig)


        nCPUs = multiprocessing.cpu_count()

        tasks = int(n / nCPUs) * np.ones(nCPUs, 'i')
        tasks[:int(n%nCPUs)] += 1

        processes = [multiprocessing.Process(target = rendJitTri2, args=(im, im1, x, y, jsig, mcp, imageBounds, pixelSize, nIt)) for nIt in tasks]

        for p in processes:
            p.start()

        for p in processes:
            p.join()

    else:
        im = np.zeros((sizeX, sizeY))
        im1 = np.zeros((sizeX, sizeY))

        rendJitTri2(im, im1, x, y, jsig, mcp, imageBounds, pixelSize, n)

    imn =  im/(im1+1) #n
    return imn
def rendJitTet(x,y,z,n,jsig, jsigz, mcp, imageBounds, pixelSize, sliceSize=100):
    # FIXME - signature now differs from visHelpersMin
    
    #import gen3DTriangs
    sizeX = int((imageBounds.x1 - imageBounds.x0) / pixelSize)
    sizeY = int((imageBounds.y1 - imageBounds.y0) / pixelSize)
    sizeZ = int((imageBounds.z1 - imageBounds.z0) / sliceSize)

    # convert from [nm] to [pixels]
    x = (x - imageBounds.x0) / pixelSize
    y = (y - imageBounds.y0) / pixelSize
    z = (z - imageBounds.z0) / sliceSize

    jsig = jsig / pixelSize
    jsigz = jsigz / sliceSize
    
    
    if multiProc and not multiprocessing.current_process().daemon:
        im = shmarray.zeros((sizeX, sizeY, sizeZ), order='F')

        x = shmarray.create_copy(x)
        y = shmarray.create_copy(y)
        z = shmarray.create_copy(z)

        if type(jsig) == np.ndarray:
            jsig = shmarray.create_copy(jsig)

        if type(jsigz) == np.ndarray:
            jsigz = shmarray.create_copy(jsigz)


        nCPUs = multiprocessing.cpu_count()

        tasks = int(n / nCPUs) * np.ones(nCPUs, 'i')
        tasks[:int(n % nCPUs)] += 1

        processes = [multiprocessing.Process(target = rendJTet, args=(im, y, x,z, jsig, jsigz, mcp, nIt)) for nIt in tasks]

        for p in processes:
            p.start()

        for p in processes:
            p.join()

        return im/n

    else:
        im = np.zeros((sizeX, sizeY, sizeZ), order='F')

        rendJTet(im, y, x, z, jsig, jsigz, mcp, n)

        return im/n
Example #4
0
def rendJitTriang(x,
                  y,
                  n,
                  jsig,
                  mcp,
                  imageBounds,
                  pixelSize,
                  seeds=None,
                  geometric_mean=True,
                  mdh=None):
    """

    Parameters
    ----------
    x : ndarray
        x positions [nm]
    y : ndarray
        y positions [nm]
    n : number of jittered renderings to average into final rendering
    jsig : ndarray (or scalar float)
        standard deviations [nm] of normal distributions to sample when jittering for each point
    mcp : float
        Monte Carlo sampling probability (0, 1]
    imageBounds : PYME.IO.ImageBounds
        ImageBounds instance - range in each dimension should ideally be an integer multiple of pixelSize.
    pixelSize : float
        size of pixels to be rendered [nm]
    seeds : ndarray
        [optional] supplied seeds if we want to strictly reconstruct a previously generated image
    geometric_mean : bool
        [optional] Flag to scale intensity by geometric mean (True) or [localizations / um^2] (False)
    mdh: PYME.IO.MetaDataHandler.MDHandlerBase or subclass
        [optional] metadata handler to store seeds to

    Returns
    -------
    im : ndarray
        2D Jittered Triangulation rendering.

    Notes
    -----
    Triangles which reach outside of the image bounds are dropped and not included in the rendering.
    """
    sizeX = int((imageBounds.x1 - imageBounds.x0) / pixelSize)
    sizeY = int((imageBounds.y1 - imageBounds.y0) / pixelSize)

    if geometric_mean:
        fcn = _rend_jit_tri_geometric
    else:
        fcn = rendJitTri

    if multiProc and not multiprocessing.current_process().daemon:
        im = shmarray.zeros((sizeX, sizeY))

        x = shmarray.create_copy(x)
        y = shmarray.create_copy(y)
        if type(jsig) == numpy.ndarray:
            jsig = shmarray.create_copy(jsig)

        # We will generate 1 process for each seed, defaulting to generating a seed for each CPU core if seeds are not
        # passed explicitly. Rendering with explicitly passed seeds will be deterministic, but performance will not be
        # optimal unless n_seeds = n_CPUs
        seeds = _generate_subprocess_seeds(multiprocessing.cpu_count(), mdh,
                                           seeds)
        iterations = _iterations_per_task(n, len(seeds))

        processes = [
            multiprocessing.Process(target=fcn,
                                    args=(im, x, y, jsig, mcp, imageBounds,
                                          pixelSize, nIt, s))
            for nIt, s in zip(iterations, seeds)
        ]

        for p in processes:
            p.start()

        for p in processes:
            p.join()

    else:
        im = numpy.zeros((sizeX, sizeY))

        # Technically we could just call fcn( ....,n), but we replicate the logic above and divide into groups of tasks
        # so that we can reproduce a previously generated image
        seeds = _generate_subprocess_seeds(1, mdh, seeds)
        iterations = _iterations_per_task(n, len(seeds))

        for nIt, s in zip(iterations, seeds):
            # NB - in normal usage, this loop only evaluates once, with nIt=n
            fcn(im, x, y, jsig, mcp, imageBounds, pixelSize, nIt, seed=s)

    if geometric_mean:
        return (1.e6 / (im / n + 1)) * (im > n)
    else:
        return im / n