Example #1
0
    def test_volumes(self):
        # type: (RectangleTestCase) -> None
        p1 = (0.0, 0.75)
        p2 = (1.0, 1.75)
        r1 = Rectangle(p1, p2)

        p3 = (0.5, 0.0)
        p4 = (1.5, 1.0)
        r2 = Rectangle(p3, p4)

        p5 = (1.0, 1.0)
        p6 = (2.0, 2.0)
        r3 = Rectangle(p5, p6)

        r_intersect = r1.intersection(r2)

        # Volumes
        self.assertEqual(r1.volume(), r2.volume())
        self.assertEqual(r3.volume(), r1.volume())
        self.assertEqual(r3.volume(), r2.volume())

        self.assertGreater(r1.volume(), r_intersect.volume())
        self.assertGreater(r2.volume(), r_intersect.volume())
Example #2
0
def multidim_search_opt_0(xspace,
                          oracle,
                          epsilon=EPS,
                          delta=DELTA,
                          max_step=STEPS,
                          blocking=False,
                          sleep=0.0,
                          logging=True):
    # type: (Rectangle, Oracle, float, float, float, bool, float, bool) -> ResultSet

    # Xspace is a particular case of maximal rectangle
    # Xspace = [min_corner, max_corner]^n = [0, 1]^n
    # xspace.min_corner = (0,) * n
    # xspace.max_corner = (1,) * n

    # Dimension
    n = xspace.dim()

    # Set of comparable and incomparable rectangles, represented by 'alpha' indices
    comparable = comp(n)
    incomparable = incomp(n)
    # comparable = [zero, one]
    # incomparable = list(set(alpha) - set(comparable))
    # with:
    # zero = (0_1,...,0_n)
    # one = (1_1,...,1_n)

    # List of incomparable rectangles
    # border = [xspace]
    border = SortedListWithKey(key=Rectangle.volume)
    # border = SortedSet(key=Rectangle.volume)
    border.add(xspace)

    ylow = []
    yup = []

    # oracle function
    f = oracle.membership()

    error = (epsilon,) * n
    vol_total = xspace.volume()
    vol_yup = 0
    vol_ylow = 0
    vol_border = vol_total
    step = 0

    RootSearch.logger.debug('xspace: {0}'.format(xspace))
    RootSearch.logger.debug('vol_border: {0}'.format(vol_border))
    RootSearch.logger.debug('delta: {0}'.format(delta))
    RootSearch.logger.debug('step: {0}'.format(step))
    RootSearch.logger.debug('incomparable: {0}'.format(incomparable))
    RootSearch.logger.debug('comparable: {0}'.format(comparable))

    # Create temporary directory for storing the result of each step
    tempdir = tempfile.mkdtemp()

    RootSearch.logger.info('Report\nStep, Ylow, Yup, Border, Total, nYlow, nYup, nBorder, BinSearch')
    while (vol_border >= delta) and (step <= max_step) and (len(border) > 0):
        step = step + 1
        # if RootSearch.logger.isEnabledFor(RootSearch.logger.DEBUG):
        #    RootSearch.logger.debug('border: {0}'.format(border))
        # l.sort(key=Rectangle.volume)

        xrectangle = border.pop()

        RootSearch.logger.debug('xrectangle: {0}'.format(xrectangle))
        RootSearch.logger.debug('xrectangle.volume: {0}'.format(xrectangle.volume()))
        RootSearch.logger.debug('xrectangle.norm: {0}'.format(xrectangle.norm()))

        # y, segment
        # y = search(xrectangle.diag(), f, epsilon)
        y, steps_binsearch = binary_search(xrectangle.diag(), f, error)
        RootSearch.logger.debug('y: {0}'.format(y))

        # b0 = Rectangle(xspace.min_corner, y.low)
        b0 = Rectangle(xrectangle.min_corner, y.low)
        ylow.append(b0)
        vol_ylow += b0.volume()

        RootSearch.logger.debug('b0: {0}'.format(b0))
        RootSearch.logger.debug('ylow: {0}'.format(ylow))

        # b1 = Rectangle(y.high, xspace.max_corner)
        b1 = Rectangle(y.high, xrectangle.max_corner)
        yup.append(b1)
        vol_yup += b1.volume()

        RootSearch.logger.debug('b1: {0}'.format(b1))
        RootSearch.logger.debug('yup: {0}'.format(yup))

        yrectangle = Rectangle(y.low, y.high)
        i = irect(incomparable, yrectangle, xrectangle)
        # i = pirect(incomparable, yrectangle, xrectangle)
        # l.extend(i)

        border += i
        RootSearch.logger.debug('irect: {0}'.format(i))

        # Remove boxes in the boundary with volume 0
        # border = border[border.bisect_key_right(0.0):]
        del border[:border.bisect_key_left(0.0)]

        vol_border = vol_total - vol_yup - vol_ylow

        RootSearch.logger.info(
            '{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}'.format(step, vol_ylow, vol_yup, vol_border, vol_total,
                                                                 len(ylow), len(yup), len(border),
                                                                 steps_binsearch))
        if sleep > 0.0:
            rs = ResultSet(border, ylow, yup, xspace)
            if n == 2:
                rs.plot_2D_light(blocking=blocking, sec=sleep, opacity=0.7)
            elif n == 3:
                rs.plot_3D_light(blocking=blocking, sec=sleep, opacity=0.7)

        if logging:
            rs = ResultSet(border, ylow, yup, xspace)
            name = os.path.join(tempdir, str(step))
            rs.to_file(name)

    return ResultSet(border, ylow, yup, xspace)
Example #3
0
def multidim_search_opt_1(xspace,
                          oracle,
                          epsilon=EPS,
                          delta=DELTA,
                          max_step=STEPS,
                          blocking=False,
                          sleep=0.0,
                          logging=True):
    # type: (Rectangle, Oracle, float, float, float, bool, float, bool) -> ResultSet

    # Xspace is a particular case of maximal rectangle
    # Xspace = [min_corner, max_corner]^n = [0, 1]^n
    # xspace.min_corner = (0,) * n
    # xspace.max_corner = (1,) * n

    # Dimension
    n = xspace.dim()

    # Set of comparable and incomparable rectangles, represented by 'alpha' indices
    comparable = comp(n)
    incomparable = incomp(n)
    # comparable = [zero, one]
    # incomparable = list(set(alpha) - set(comparable))
    # with:
    # zero = (0_1,...,0_n)
    # one = (1_1,...,1_n)

    # List of incomparable rectangles
    # border = [xspace]
    # border = SortedListWithKey(key=Rectangle.volume)
    border = SortedSet([], key=Rectangle.volume)
    border.add(xspace)

    ylow = []
    yup = []

    # oracle function
    f = oracle.membership()

    error = (epsilon,) * n
    vol_total = xspace.volume()
    vol_yup = 0
    vol_ylow = 0
    vol_border = vol_total
    step = 0

    RootSearch.logger.debug('xspace: {0}'.format(xspace))
    RootSearch.logger.debug('vol_border: {0}'.format(vol_border))
    RootSearch.logger.debug('delta: {0}'.format(delta))
    RootSearch.logger.debug('step: {0}'.format(step))
    RootSearch.logger.debug('incomparable: {0}'.format(incomparable))
    RootSearch.logger.debug('comparable: {0}'.format(comparable))

    # Create temporary directory for storing the result of each step
    tempdir = tempfile.mkdtemp()

    RootSearch.logger.info(
        'Report\nStep, Ylow, Yup, Border, Total, nYlow, nYup, nBorder, BinSearch, nBorder dominated by Ylow, nBorder dominated by Yup')
    while (vol_border >= delta) and (step <= max_step) and (len(border) > 0):
        step = step + 1
        # if RootSearch.logger.isEnabledFor(RootSearch.logger.DEBUG):
        #    RootSearch.logger.debug('border: {0}'.format(border))
        # l.sort(key=Rectangle.volume)

        xrectangle = border.pop()

        RootSearch.logger.debug('xrectangle: {0}'.format(xrectangle))
        RootSearch.logger.debug('xrectangle.volume: {0}'.format(xrectangle.volume()))
        RootSearch.logger.debug('xrectangle.norm: {0}'.format(xrectangle.norm()))

        # y, segment
        # y = search(xrectangle.diag(), f, epsilon)
        y, steps_binsearch = binary_search(xrectangle.diag(), f, error)
        RootSearch.logger.debug('y: {0}'.format(y))
        # discovered_segments.append(y)

        b0 = Rectangle(xrectangle.min_corner, y.low)
        b1 = Rectangle(y.high, xrectangle.max_corner)

        ylow.append(b0)
        yup.append(b1)

        vol_ylow += b0.volume()
        vol_yup += b1.volume()

        RootSearch.logger.debug('b0: {0}'.format(b0))
        RootSearch.logger.debug('b1: {0}'.format(b1))

        RootSearch.logger.debug('ylow: {0}'.format(ylow))
        RootSearch.logger.debug('yup: {0}'.format(yup))

        ################################
        # Every Border rectangle that dominates B0 is included in Ylow
        # Every Border rectangle that is dominated by B1 is included in Yup
        b0_extended = Rectangle(xspace.min_corner, y.low)
        b1_extended = Rectangle(y.high, xspace.max_corner)

        # Every cube in the boundary overlaps another cube in the boundary
        # When cubes from the boundary are moved to ylow or yup, they may still have a complementary cube
        # remaining in the boundary with a non-empty intersection.
        border_overlapping_ylow = [r for r in ylow if r.overlaps(b0_extended)]
        border_overlapping_yup = [r for r in yup if r.overlaps(b1_extended)]

        border_overlapping_b0 = [rect for rect in border if rect.overlaps(b0_extended)]
        # Warning: Be aware of the overlapping areas of the cubes in the border.
        # If we calculate the intersection of b0_extended with all the cubes in the frontier, and two cubes
        # 'a' and 'b' partially overlaps, then the volume of this overlapping portion will be counted twice
        # border_dominatedby_b0 = [rect.intersection(b0_extended) for rect in border_overlapping_b0]
        # Solution: Project the 'shadow' of the cubes in the border over b0_extended.
        border_dominatedby_b0_shadow = Rectangle.difference_rectangles(b0_extended, border_overlapping_b0)

        # The negative of this image returns a set of cubes in the boundary without overlapping.
        # border_dominatedby_b0 will be appended to ylow.
        # Remove the portion of the negative that overlaps any cube that is already appended to ylow
        border_dominatedby_b0 = Rectangle.difference_rectangles(b0_extended,
                                                                border_dominatedby_b0_shadow + border_overlapping_ylow)

        # border_nondominatedby_b0 = [rect - b0_extended for rect in border_overlapping_b0]

        border_nondominatedby_b0 = []
        for rect in border_overlapping_b0:
            border_nondominatedby_b0 += list(rect - b0_extended)

        # border_nondominatedby_b0 = set()
        # for rect in border_overlapping_b0:
        #    border_nondominatedby_b0 |= set(rect - b0_extended)
        # border_nondominatedby_b0 -= set(border_overlapping_b0)

        # if 'rect' is completely dominated by b0_extended (i.e., rect is strictly inside b0_extended), then
        # set(rect - b0_extended) == {rect}
        # Therefore, 'rect' must be removed from 'non dominated' borders

        # border -= border_overlapping_b0
        border |= border_nondominatedby_b0
        border -= border_overlapping_b0

        border_overlapping_b1 = [rect for rect in border if rect.overlaps(b1_extended)]
        # Warning: Be aware of the overlapping areas of the cubes in the border.
        # If we calculate the intersection of b1_extended with all the cubes in the frontier, and two cubes
        # 'a' and 'b' partially overlaps, then the volume of this overlapping portion will be considered twice
        # border_dominatedby_b1 = [rect.intersection(b1_extended) for rect in border_overlapping_b1]
        # Solution: Project the 'shadow' of the cubes in the border over b1_extended.
        border_dominatedby_b1_shadow = Rectangle.difference_rectangles(b1_extended, border_overlapping_b1)

        # The negative of this image returns a set of cubes in the boundary without overlapping.
        # border_dominatedby_b1 will be appended to yup.
        # Remove the portion of the negative that overlaps any cube that is already appended to yup
        border_dominatedby_b1 = Rectangle.difference_rectangles(b1_extended,
                                                                border_dominatedby_b1_shadow + border_overlapping_yup)

        # border_nondominatedby_b1 = [rect - b1_extended for rect in border_overlapping_b1]

        border_nondominatedby_b1 = []
        for rect in border_overlapping_b1:
            border_nondominatedby_b1 += list(rect - b1_extended)

        # border_nondominatedby_b1 = set()
        # for rect in border_overlapping_b1:
        #    border_nondominatedby_b1 |= set(rect - b1_extended)
        # border_nondominatedby_b1 -= set(border_overlapping_b1)

        # if 'rect' is completely dominated by b1_extended (i.e., rect is strictly inside b1_extended), then
        # set(rect - b1_extended) == {rect}
        # Therefore, 'rect' must be removed from 'non dominated' borders

        # border -= border_overlapping_b1
        border |= border_nondominatedby_b1
        border -= border_overlapping_b1

        ylow.extend(border_dominatedby_b0)
        yup.extend(border_dominatedby_b1)

        vol_ylow += sum(b0.volume() for b0 in border_dominatedby_b0)
        vol_yup += sum(b1.volume() for b1 in border_dominatedby_b1)

        ################################
        # Every rectangle in 'i' is incomparable for current B0 and for all B0 included in Ylow
        # Every rectangle in 'i' is incomparable for current B1 and for all B1 included in Yup
        ################################

        yrectangle = Rectangle(y.low, y.high)
        i = irect(incomparable, yrectangle, xrectangle)
        # i = pirect(incomparable, yrectangle, xrectangle)
        # l.extend(i)

        border |= i
        RootSearch.logger.debug('irect: {0}'.format(i))

        # Remove boxes in the boundary with volume 0
        border -= border[:border.bisect_key_left(0.0)]

        vol_border = vol_total - vol_yup - vol_ylow

        RootSearch.logger.info('{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}'
                               .format(step, vol_ylow, vol_yup, vol_border, vol_total, len(ylow), len(yup), len(border),
                                       steps_binsearch,
                                       len(border_overlapping_b0), len(border_overlapping_b1)))
        if sleep > 0.0:
            rs = ResultSet(border, ylow, yup, xspace)
            if n == 2:
                rs.plot_2D_light(blocking=blocking, sec=sleep, opacity=0.7)
            elif n == 3:
                rs.plot_3D_light(blocking=blocking, sec=sleep, opacity=0.7)

        if logging:
            rs = ResultSet(border, ylow, yup, xspace)
            name = os.path.join(tempdir, str(step))
            rs.to_file(name)

    return ResultSet(border, ylow, yup, xspace)