Example #1
0
 def __init__(self, is_dbg=False, fp_video=''):
     CellPhysicsBase.__init__(self, is_dbg=is_dbg, fp_video=fp_video)
def draw_result(fp_label,
                fp_res,
                fp_massmap,
                fp_posres,
                setups,
                masses_gt=[1, 1, 1, 1],
                iters=[
                    -1,
                    0,
                    1,
                    2,
                ]):

    cmap = matplotlib.cm.coolwarm
    #cnorm = matplotlib.colors.Normalize(vmin=0.1,vmax=4.9)

    obj = os.path.split(fp_label)[1].split('_')[0]

    sim = SimBullet(gui=False)
    #sim._p.setGravity(0,0,-9.8)
    sim.addObject('table_rect', 'table_rect', [1, 1, 1, 0])
    sim.setupRendering(0.75, -90, -60, 500, 500)
    img_label = cv2.imread(fp_label, cv2.IMREAD_UNCHANGED)
    labels = np.unique(img_label)
    cells = CellPhysicsBase.createCells(img_label, masses_gt, 0.53 / 640.0)
    sim.addObject(obj, cells, [0, 0, 1, 1])
    sim.setObjectPose(obj, 0, 0, 0)

    cellinfos = sim.getCellBodyProperties(obj)
    vmax = max([info['mass'] for info in cellinfos])
    vmin = min([info['mass'] for info in cellinfos])
    cnorm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
    for info in cellinfos:
        info['color'] = cmap(cnorm(info['mass']))
    sim.setCellBodyProperties(obj, cellinfos)
    img = sim.draw()
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    cv2.imwrite(fp_massmap % -3, img)

    f = open(fp_res, 'rb')
    res = pickle.load(f)
    f.close()

    # estimation example
    cellinfos = res['history'][-1]['cellinfos']
    #cnorm = matplotlib.colors.Normalize(vmin=0.1,vmax=5)
    for info in cellinfos[obj]:
        info['color'] = cmap(cnorm((vmax - vmin) * 0.5))
    sim.setCellBodyProperties(obj, cellinfos[obj])
    img = sim.draw()

    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    cv2.imwrite(fp_massmap % -2, img)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    for it in iters:

        if it >= len(res['history']):
            continue

        cellinfos = res['history'][it]['cellinfos']
        #vmax = max([info['mass'] for info in cellinfos[obj]])
        #vmin = min([info['mass'] for info in cellinfos[obj]])
        #cnorm = matplotlib.colors.Normalize(vmin=vmin,vmax=vmax)
        for info in cellinfos[obj]:
            info['color'] = cmap(cnorm(info['mass']))
        sim.setCellBodyProperties(obj, cellinfos[obj])
        img = sim.draw()
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        cv2.imwrite(fp_massmap % it, img)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    return

    # debug image
    sim.setupRendering(0.75, 90, -90, 500, 500)

    sim.addObject('finger1', 'finger', [1, 1, 0.9, 1])
    sim.addObject('finger2', 'finger', [1, 1, 0.6, 1])
    sim.addObject('finger3', 'finger', [1, 1, 0.3, 1])

    sim.addObject('init', cells, [0.7, 0.7, 0.7, 1])
    pos, rot = sim.getPosRot(sim.objects['init']['shape'], 0, 0, 0)
    pos[2] = pos[2] - 0.002
    sim._p.resetBasePositionAndOrientation(sim.objects['init']['bodyId'], pos,
                                           rot)

    sim.addObject('gt', cells, [0, 1, 0, 1])
    for i in range(len(res['history'][-1]['test_poses'])):

        if 'real' not in setups:
            pixel2meter(cells, setups['test'][i])
            sim.resetObject('finger1',setups['test'][i]['finger']['pos'][0] - 0.03,\
                                      setups['test'][i]['finger']['pos'][1],0)
            sim.resetObject('finger2',setups['test'][i]['finger']['pos'][0] + setups['test'][i]['finger']['velocity'][0]*0.40 - 0.03,\
                                      setups['test'][i]['finger']['pos'][1] + setups['test'][i]['finger']['velocity'][1]*0.40,0)
            sim.resetObject('finger3',setups['test'][i]['finger']['pos'][0] + setups['test'][i]['finger']['velocity'][0]*0.90 - 0.03,\
                                      setups['test'][i]['finger']['pos'][1] + setups['test'][i]['finger']['velocity'][1]*0.90,0)
        else:
            sim.resetObject('finger1',setups['real'][i]['finger']['pos'][0] - 0.03,\
                                      setups['real'][i]['finger']['pos'][1],0)
            sim.resetObject('finger2',setups['real'][i]['finger']['pos'][0] + setups['real'][i]['finger']['velocity'][0]*0.40 - 0.03,\
                                      setups['real'][i]['finger']['pos'][1] + setups['real'][i]['finger']['velocity'][1]*0.40,0)
            sim.resetObject('finger3',setups['real'][i]['finger']['pos'][0] + setups['real'][i]['finger']['velocity'][0]*0.90 - 0.03,\
                                      setups['real'][i]['finger']['pos'][1] + setups['real'][i]['finger']['velocity'][1]*0.90,0)

        pose_gt = res['history'][-1]['test_poses'][i]['gt']

        #sim.resetObject(obj,100,100,0)
        sim.resetObject('gt', pose_gt[obj]['x'], pose_gt[obj]['y'],
                        pose_gt[obj]['yaw'])
        #img = sim.draw()
        #img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
        #cv2.imwrite(fp_posres % (i+20),img)
        #img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

        #sim.resetObject('gt',100,100,0)
        pose_est = res['history'][-1]['test_poses'][i]['estimation']
        sim.resetObject(obj, pose_est[obj]['x'], pose_est[obj]['y'],
                        pose_est[obj]['yaw'])

        pos, rot = sim.getPosRot(sim.objects['gt']['shape'], pose_gt[obj]['x'],
                                 pose_gt[obj]['y'], pose_gt[obj]['yaw'])
        pos[0] = pos[0] - 0.001
        pos[2] = pos[2] - 0.001
        sim._p.resetBasePositionAndOrientation(sim.objects['gt']['bodyId'],
                                               pos, rot)

        img = sim.draw()
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        cv2.imwrite(fp_posres % i, img)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
Example #3
0
    def __init__(self, is_dbg=False, fp_video=''):
        CellPhysicsBase.__init__(self,is_dbg=is_dbg,fp_video=fp_video)

        self.n_grads = 0
        self.time_grads = 0
Example #4
0
if __name__ == '__main__':
    #obj = 'hammer'

    dir_sav = 'sav_tmp4'

    for obj in [
            'book', 'box', 'crimp', 'hammer', 'ranch', 'snack', 'toothpaste',
            'windex'
    ]:

        if not os.path.isdir(dir_sav + '/fig'):
            os.makedirs(dir_sav + '/fig')

        fp_label = '../../dataset/objects/%s_label.pgm' % obj
        img_label = cv2.imread(fp_label, cv2.IMREAD_UNCHANGED)
        cells = CellPhysicsBase.createCells(img_label, [1, 1, 1, 1],
                                            0.53 / 640.0)

        sim = SimBullet(gui=False)
        sim.setupRendering(0.75, -90, -60, 500, 500)
        sim.addObject(obj, cells, [0, 0, 1, 1])
        sim.setObjectPose(obj, 0, 0, 0)

        files = glob.glob(dir_sav + '/' + obj + '*.pkl')
        for file in files:

            filename = os.path.split(file)[1].split('.')[0]

            f = open(file, 'rb')
            sav = pickle.load(f)
            f.close()