def get_data(PICKLEDIC, PICKLENAME): # read test data test_set = load(os.path.join(PICKLEDIC, PICKLENAME)) if test_set is None: print("No Test data, aborting...") sys.exit(0) random.shuffle(test_set) # should be here with open("../dataset/kFoldDataset/pickles/classes.json") as classesFile: class_dict = json.load(classesFile) test_lens = get_class_numbers(test_set, class_dict) test_data = get_reduced_set(test_set, test_lens, 'min') rawdata, specdata, _ = get_samples_and_labels(test_data) return rawdata, specdata
# read train data test_set = load(test_dataset_path) if test_set is None: print("No Test data, aborting...") sys.exit(0) random.shuffle(train_set) random.shuffle(test_set) # should be here train_lens = get_class_numbers(train_set, class_dict) train_data = get_reduced_set(train_set, train_lens, 'min') test_lens = get_class_numbers(test_set, class_dict) test_data = get_reduced_set(test_set, test_lens, 'min') _, Xtrain, Ytrain = get_samples_and_labels(train_data) _, Xtest, Ytest = get_samples_and_labels(test_data) print("Train size", len(Ytrain)) print("Test size", len(Ytest)) Xtrain = tf.convert_to_tensor(Xtrain, dtype=tf.float32) Ytrain = tf.convert_to_tensor(Ytrain, dtype=tf.float32) Xtest = tf.convert_to_tensor(Xtest, dtype=tf.float32) Ytest = tf.convert_to_tensor(Ytest, dtype=tf.float32) print("Allocating tensors") train_it = tf.data.Dataset.from_tensor_slices((Xtrain, Ytrain)) test_it = tf.data.Dataset.from_tensor_slices((Xtest, Ytest))
test_dataset_path = test_path + str(i) raw_path = os.path.join(model_raw, str(i) + '.h5') spectro_path = os.path.join(model_spectro, str(i) + '.h5') # read test data test_set = load(test_dataset_path) if test_set is None: print("No Test data, aborting...") sys.exit(0) random.shuffle(test_set) # should be here test_lens = get_class_numbers(test_set, class_dict) test_data = get_reduced_set(test_set, test_lens, 'min') Xtest_raw, Xtest_spec, Ytest = get_samples_and_labels(test_data) size = len(Ytest) Xtest_raw = tf.convert_to_tensor(Xtest_raw, dtype=tf.float32) Xtest_spec = tf.convert_to_tensor(Xtest_spec, dtype=tf.float32) Ytest = tf.convert_to_tensor(Ytest, dtype=tf.float32) print("Allocating tensors") test_it = tf.data.Dataset.from_tensor_slices( (Xtest_raw, Xtest_spec, Ytest)) rawnet = rawCNN() spectronet = SpectroCNN()