Example #1
0
def save_redist_pattern_figure(level=0):
    name = "redist_figure"

    entropy_redist_potential = [(
        (70, -110),
        ippg.GradientParabolaMinusGauss_GaussDipFloor(
            #parab=[600, 900], amplitude=1,
            parab=[600 / 2., 900 / 2.],
            amplitude=1,
            gausscomp=[120, 180],
            gausscomp_height=0.2,
            level=level,
            # gauss=[60*.75*1.0, 60*.75*1.0], gauss_height=1,
            gauss=[60 * 1.0, 60 * 1.0],
            gauss_height=1,
            #gradient=[0.0000, 0.0002]# [++ -> upper right on atoms, ++ -> upper left]
            gradient=[0.0006, -0.0008
                      ]  # [++ -> upper right on atoms, ++ -> upper left]
        ))]

    pattern_settings = {
        'zero_pixel': (702, 816),
        'sites': entropy_redist_potential,
        'binarization_algorithm': 'error_diffusion'
    }

    potential = ippg.ProjectedPotential(**pattern_settings)
    binarized, real_valued = potential.binarized_potential, potential.real_valued_potential

    return binarized, real_valued
Example #2
0
 def get_boxes(cls):
     box_dict = {
                 cls.center1():ippg.BoxFunction(radii = [cls.l_NE, cls.w_short], x_angle=cls.angle_long,
                                                amplitude=cls.amp1),
                 cls.center2():ippg.BoxFunction(radii = [cls.w_long, cls.l_long], x_angle=cls.angle_long,
                                                amplitude=cls.amp2),
                 cls.center3():ippg.BoxFunction(radii = [cls.l_NE, cls.w_short], x_angle=cls.angle_long,
                                                amplitude=cls.amp3),
                 cls.center4():ippg.BoxFunction(radii = [cls.w_long, cls.l_long], x_angle=cls.angle_long,
                                                amplitude=cls.amp4),
                 }
     return box_dict
Example #3
0
def real_pattern_print():

    #Prepare Pattern
    lc_dmd = lc.LC6500Device()

    settings = {
                'compression':'rle',
                'exposure_time':5000000 # in us
                }
    dmd_pattern = pc.DMDPattern(**settings)

    is_debug = False

   #TEST STUFF
    sites_dict = [((0, 0), ippg.GradientParabolaMinusGauss_GaussDip(parab=[600*1.5, 900*1.5], amplitude=1,
                                                  gausscomp=[120, 180], gausscomp_height=0.2,
                                                  gauss=[60, 90], gauss_height=1.0,
                                                  #gradient=[0.0, 0.0]
                                                  gradient=[-0.0003, 0.0002] # [++ -> upper right on atoms, ++ -> upper left]
                                                                     ))
                                         ]

    # settings = {'zero_pixel': (824, 429),
    settings = {'zero_pixel': (762, 586),
                'sites': sites_dict,
                'binarization_algorithm': 'threshold'}#''error_diffusion'}

    potential = ippg.ProjectedPotential(**settings)

    # uncomment this to get a saved copy of the potential
    # imsave('out.png', evaluated_matrix)

    # uncomment this to use the painted potential
    # potential.real_valued_potential = np.array(imread('out.png', mode='L')).astype('float')
    # potential.real_valued_potential /= float(np.max(potential.real_valued_potential))

    binary_matrix =potential.binarized_potential

    if is_debug:
        plt.gray()
        plt.imshow(binary_matrix,interpolation='none')
        # plt.imshow(potential.real_valued_potential,interpolation='none')
        plt.figaspect(1)
        pkl.dump(binary_matrix, open('diffused.pkl', 'wb'), protocol=2)

        plt.show()

    dmd_pattern.pattern = binary_matrix

    dmd_patterns = {'patterns':[dmd_pattern]}
    lc_dmd.upload_image_sequence(dmd_patterns)
Example #4
0
def real_pattern_series_test():

    lc_dmd = lc.LC6500Device()
    print lc_dmd.dev
    #Prepare Pattern
    #settings = {'function':pc.stripes_2,#pc.circle_fun_2,
    settings = {'function':pc.circle_fun_2,
                'compression':'rle',
                'exposure_time':500000 # in us
                }
    dmd_pattern = pc.DMDPattern(**settings)
    dmd_pattern_2 = pc.DMDPattern(**settings)

    
    #dmd_pattern.compute_pattern()
    site_rad = 6
    site_radii = [site_rad, site_rad]
    sites_dict = {(-25,-15):ippg.GaussFunction(radii = [1000,200])}
    settings = {'sites':sites_dict,
                'binarization_algorithm':'randomize'}

    potential = ippg.ProjectedPotential(**settings)
    evaluated_matrix = potential.evaluate_potential()
    binary_matrix = potential.binarize()
    dmd_pattern.pattern = binary_matrix 


    sites_dict = {(-25,-15):ippg.GaussFunction(radii = [200,1000])}

    settings = {'sites':sites_dict,
                'binarization_algorithm':'threshold'}

    potential = ippg.ProjectedPotential(**settings)
    evaluated_matrix = potential.evaluate_potential()
    binary_matrix = potential.binarize()
    
    dmd_pattern_2.pattern = binary_matrix
    
    dmd_patterns = {'patterns':[dmd_pattern, dmd_pattern_2, dmd_pattern]}
    lc_dmd.upload_image_sequence(dmd_patterns)
    
    #lc_dmd.upload_image(dmd_pattern)

    #command_sequence = dmd_pattern.compress_pattern()
    #lc_dmd.upload_image(command_sequence)
    lc_dmd.release()
Example #5
0
def save_redist_pattern():
    name = "redist"

    entropy_redist_potential = [(
        (70, -110),
        ippg.GradientParabolaMinusGauss_GaussDipFloor(
            #parab=[600, 900], amplitude=1,
            parab=[600 / 2., 900 / 2.],
            amplitude=1,
            gausscomp=[120, 180],
            gausscomp_height=0.2,
            level=0.00,
            # gauss=[60*.75*1.0, 60*.75*1.0], gauss_height=1,
            gauss=[60 * 1.0, 60 * 1.0],
            gauss_height=1,
            #gradient=[0.0000, 0.0002]# [++ -> upper right on atoms, ++ -> upper left]
            gradient=[0.0006, -0.0008
                      ]  # [++ -> upper right on atoms, ++ -> upper left]
        ))]

    # gradient=[0.0036, 0.0012]# [++ -> upper right on atoms, ++ -> upper left]
    # entropy_redist_potential = [((30, -60), ippg.GradientParabolaMinusGauss_GaussDipFloor(
    #                                               #parab=[600, 900], amplitude=1,
    #                                               parab=[600/2., 900/2.], amplitude=1,
    #                                               gausscomp=[120, 180],
    #                                               gausscomp_height=0.2,
    #                                               level=0.0, #0.42, #0,
    #                                               gauss=[60*.75*1.0, 60*.75*1.0], gauss_height=1,
    #                                               #gradient=[0.0000, 0.0002]# [++ -> upper right on atoms, ++ -> upper left]
    #                                               gradient=[0.0014, -0.0006]# [++ -> upper right on atoms, ++ -> upper left]

    #                      ))]

    pattern_settings = {
        'zero_pixel': (702, 816),
        'sites': entropy_redist_potential,
        'binarization_algorithm': 'error_diffusion'
    }

    potential = ippg.ProjectedPotential(**pattern_settings)
    SavedPattern(potential.binarized_potential,
                 potential.real_valued_potential,
                 name,
                 metadata=pattern_settings)
Example #6
0
def save_focusing_pattern():
    name = "focusing"

    entropy_redist_potential = [((30, -60), ippg.BoxFunction(radii=[20, 10])),
                                ((80, 60), ippg.BoxFunction(radii=[20, 10])),
                                ((30, 60), ippg.BoxFunction(radii=[20, 10])),
                                ((80, -60), ippg.BoxFunction(radii=[20, 10]))]

    pattern_settings = {
        'zero_pixel': (702, 816),
        'sites': entropy_redist_potential,
        'binarization_algorithm': 'threshold '
    }

    potential = ippg.ProjectedPotential(**pattern_settings)
    SavedPattern(potential.binarized_potential,
                 potential.real_valued_potential,
                 name,
                 metadata=pattern_settings)
Example #7
0
def upload_video_pattern(dmd_idx):
    sites = [((0, 0), ippg.GaussFunction(radii=[100, 500], x_angle=1))]

    pattern_settings = [{
        'zero_pixel': (762, 429),
        'sites': sites,
        'binarization_algorithm': 'randomize'
    }]
    dmd_client = DmdClient(dmd_idx, pattern_settings)
    #dmd_client.ping_dmd_channel(1)
    dmd_client.upload_to_dmd_video_definition()
Example #8
0
def real_pattern_test():

    lc_dmd = lc.LC6500Device()


    #Prepare Pattern
    #settings = {'function':pc.stripes_2,#pc.circle_fun_2,
    settings = {'function':pc.circle_fun_2,
                'compression':'rle',
                'exposure_time':500000
                }
    dmd_pattern = pc.DMDPattern(**settings)

    
    #dmd_pattern.compute_pattern()
    site_rad = 6
    site_radii = [site_rad, site_rad]
    sites_dict = {#(0,0):ippg.CircFunction(radii = site_radii),
                  #(1,0):ippg.CircFunction(radii = site_radii),
                  #(3,1):ippg.CircFunction(radii = site_radii),
                  #(0,0):ippg.GaussFunction(radii = [1000,1000])
                  (0,0):ippg.GaussFunction(radii = [500,500])
                  }
   #settings = {'sites':sites_dict,
    #            'binarization_algorithm':'error_diffusion'}

    # sites_dict = {(-100,-158):ippg.CircFunction(radii = [4,4], x_angle=1, amplitude=1)}
    #sites_dict = {(-188,-264):ippg.CircFunction(radii = [4,4], x_angle=1, amplitude=1)}

    settings = {'sites':sites_dict,
                'binarization_algorithm':'threshold'}
                #'binarization_algorithm':'error_diffusion'}
    potential = ippg.ProjectedPotential(**settings)
    evaluated_matrix = potential.evaluate_potential()
    binary_matrix = potential.binarize()
 
    dmd_pattern.pattern = binary_matrix 
    #dmd_pattern.show_pattern()
    
    lc_dmd.upload_image(dmd_pattern)
Example #9
0
def save_manual_pattern(dmd_settings={}):
    """
    Manually save a pickle and a png showing the pattern
    :param dmd_settings: optional dict of dmd settings. required if you want to use pattern on the fly mode
    :return:
    """

    name = "TEST"
    sites = [((0, 0), ippg.BoxFunction(radii=[20, 10], x_angle=1)),
             ((0, 0), ippg.GaussFunction(radii=[100, 500], x_angle=1))]

    pattern_settings = {
        'zero_pixel': (762, 429),
        'sites': sites,
        'binarization_algorithm': 'error_diffusion'
    }

    potential = ippg.ProjectedPotential(**pattern_settings)
    SavedPattern(potential.binarized_potential,
                 potential.real_valued_potential,
                 name,
                 metadata=pattern_settings)
Example #10
0
def upload_manual_pattern_on_the_fly(dmd_idx):
    dmd_settings = [{
        'compression': 'rle',
        'exposure_time': 5000000  # in us
    }]

    sites_dict = {((0, 0), ippg.BoxFunction(radii=[100, 100], x_angle=1))}

    pattern_settings = [{
        'zero_pixel': (762, 429),
        'sites': sites_dict,
        'binarization_algorithm': 'error_diffusion'
    }]

    dmd_client = DmdClient(dmd_idx,
                           pattern_settings,
                           dmd_settings_list=dmd_settings)
    dmd_client.upload_to_dmd()
Example #11
0
    def upload_img_video_definition(self, potential_settings_list, **kwargs):
        """
        Uploads the definition of the image (computed on dmd server)
        :param potential_settings_list: list of length 1, to be computed on the server
        :param kwargs:
        :return: 0
        """
        if not self.mode == 'normal_video':
            self._set_dmd_to_video_mode()

        if not len(potential_settings_list) == 1:
            raise Exception(
                "The video mode cannot play movies (ironic), since the device is not synced to the experiment"
            )

        potential = ippg.ProjectedPotential(**potential_settings_list[0])

        self.video_image = VideoImage(potential.binarized_potential, **kwargs)
        print "uploaded image with UUID %s" % self.video_image.img_uuid
        return 0
Example #12
0
    def send_pattern_to_dmd(self, dmd_settings_list, potential_settings_list):
        '''
        :param dmd_settings: list of dict of settings for dmd
        :param potential_settings_list: list of dict of settings for various patterns
        :return:
        '''

        self.dmd_settings_list = dmd_settings_list
        self.potential_settings_list = potential_settings_list

        dmd_patterns = []
        for idx, pot_set in enumerate(potential_settings_list):
            dmd_pattern = pc.DMDPattern(**dmd_settings_list[idx])
            potential = ippg.ProjectedPotential(**pot_set)
            #potential.evaluate_potential()
            #binary_matrix = potential.binarize()
            dmd_pattern.pattern = potential.binarized_potential
            dmd_patterns.append(dmd_pattern)

        dmd_patterns = {'patterns': dmd_patterns}

        self.lc_dmd = lc.LC6500Device()
        self.lc_dmd.upload_image_sequence(dmd_patterns)
        self.mode = 'pattern_on_the_fly'
Example #13
0
def real_pattern_show():

    lc_dmd = lc.LC6500Device()
    print lc_dmd.dev

    #Prepare Pattern
    settings = {
                'compression':'rle',
                'exposure_time':5000000 # in us
                }
    dmd_pattern = pc.DMDPattern(**settings)

    is_debug = False

    # sites_dict={}
    # sites_dict = {(-31,4):ippg.BoxFunction(radii = [30,10], x_angle=1),
    #               (120, 72):ippg.
    # BoxFunction(radii=[30,3], x_angle=2.5),
    #               (-31, 4):ippg.BoxFunction(radii=[30,10], x_angle=1)
    #               }

    # sites_dict = {(0, 0):ippg.CircFunction(radii = [50,50], x_angle=1, amplitude=1)}
    # # sites_dict = BoxCancellation.get_boxes()
    # sites_dict = {(0,-0):ippg.GaussFunction(radii = [100,100])}

    # sites_dict = {(0, 0): ippg.Parabola_BoxDip(parab=[600, 900], amplitude=1,
                                              # box=[1, 1], box_height=0.0,
                                              # )}


    #sites_dict = {(0, 0): ippg.Parabola_EllipseDip(parab=[600, 900], amplitude=1,
                                               # ell=[40, 60], ell_height=0.0,
                                               # )}
    # sites_dict = {(0, 0): ippg.Parabola_GaussDip(parab=[600, 900], amplitude=1,
    #                                            gauss=[60, 90], gauss_height=1.,
    #                                            )}

    #LAB STUFF
    '''
    sites_dict = {(0, 0): ippg.GradientParabolaMinusGauss_GaussDip(parab=[600*1.5, 900*1.5], amplitude=1,
                                                  gausscomp=[120, 180], gausscomp_height=0.2,
                                                  gauss=[60, 90], gauss_height=1.0,
                                                  #gradient=[0.0, 0.0]
                                                  gradient=[-0.0003, 0.0002] # [++ -> upper right on atoms, ++ -> upper left]
                                         )}
    '''
    #TEST STUFF
    sites_dict = {(0, 0): ippg.GradientParabolaMinusGauss_GaussDip(parab=[600*1.5, 900*1.5], amplitude=1,
                                                  gausscomp=[120, 180], gausscomp_height=0.2,
                                                  gauss=[60, 90], gauss_height=1.0,
                                                  #gradient=[0.0, 0.0]
                                                  gradient=[-0.0003, 0.0002] # [++ -> upper right on atoms, ++ -> upper left]
                                         )}

    # settings = {'zero_pixel': (824, 429),
    settings = {'zero_pixel': (762, 586),
                'sites': sites_dict,
                'binarization_algorithm': 'threshold'}

    potential = ippg.ProjectedPotential(**settings)
    evaluated_matrix = potential.evaluate_potential()

    # uncomment this to get a saved copy of the potential
    # imsave('out.png', evaluated_matrix)

    # uncomment this to use the painted potential
    # potential.real_valued_potential = np.array(imread('out.png', mode='L')).astype('float')
    # potential.real_valued_potential /= float(np.max(potential.real_valued_potential))

    binary_matrix = potential.binarize()

    if is_debug:
        plt.gray()
        plt.imshow(binary_matrix,interpolation='none')
        # plt.imshow(potential.real_valued_potential,interpolation='none')
        plt.figaspect(1)
        plt.show()

    dmd_pattern.pattern = binary_matrix

    dmd_patterns = {'patterns':[dmd_pattern]}
    lc_dmd.upload_image_sequence(dmd_patterns)
Example #14
0
def real_pattern_show():

    lc_dmd = lc.LC6500Device()

    #Prepare Pattern
    settings = {
        'function': pc.circle_fun_2,
        'compression': 'rle',
        'exposure_time': 100000000  # in us
    }
    dmd_pattern = pc.DMDPattern(**settings)

    is_debug = False

    sites_dict = {}

    circle_dict = {
        (0, 0): ippg.BoxFunction(radii=[200, 200], x_angle=0, amplitude=1),
        (0, 0): ippg.CircFunction(radii=[500, 500], x_angle=0, amplitude=1),
    }

    entire_beam_dict = {
        (0, 0): ippg.CircFunction(radii=[5000, 5000], x_angle=0, amplitude=1),
    }

    multipoint_dict = {
        (-100, -100): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (100, -100): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (-100, 100): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (100, 100): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (-150, -150): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (150, -150): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
        (50, -50): ippg.CircFunction(radii=[5, 5], x_angle=0, amplitude=1),
    }

    sites_dict = {
        (0, 0):
        ippg.Parabola_EllipseDip(
            parab=[400, 600],
            amplitude=1,
            ell=[80, 120],
            ell_height=0.0,
        )
    }
    #93
    # settings = {'zero_pixel': (824, 429),
    #'zero_pixel': (762, 429),
    settings = {
        'zero_pixel': (762, 586),
        'sites': sites_dict,
        'binarization_algorithm': 'randomize'
    }

    potential = ippg.ProjectedPotential(**settings)
    evaluated_matrix = potential.evaluate_potential()
    binary_matrix = potential.binarize()

    if True:
        corrector = DMDBeamCorrector('points.pgm',
                                     'profile.pgm',
                                     center=(772, 576))
        arr = np.zeros((1080, 1920))
        y, x = np.ogrid[0:1080, 0:1920]

        arr = corrector.homogenize(evaluated_matrix,
                                   w_center=(762, 586),
                                   w_size=(300, 300))

        if is_debug:
            plt.gray()
            plt.imshow(arr, interpolation='none')
            plt.show()

        for y in range(arr.shape[1]):
            print y
            for x in range(arr.shape[0]):
                # custom floyd-steinberg
                op = arr[x][y]
                # arr[x][y] = 1 if random() < op else 0
                if random() < 0:
                    newp = 1 if random() < op else 0
                else:
                    newp = 1 if 0.5 < op else 0
                arr[x][y] = newp
                err = op - newp
                if x < arr.shape[0] - 1:
                    arr[x + 1][y] = arr[x + 1][y] + err * 7 / 16
                    if y < arr.shape[1] - 1:
                        arr[x + 1][y + 1] = arr[x + 1][y + 1] + err * 1 / 16
                if y < arr.shape[1] - 1:
                    arr[x - 1][y + 1] = arr[x - 1][y + 1] + err * 3 / 16
                    arr[x][y + 1] = arr[x][y + 1] + err * 5 / 16

        binary_matrix = arr

    if is_debug:
        plt.gray()
        plt.imshow(binary_matrix, interpolation='none')
        plt.show()

    dmd_pattern.pattern = binary_matrix

    dmd_patterns = {'patterns': [dmd_pattern]}
    lc_dmd.upload_image_sequence(dmd_patterns)