Example #1
0
 def cal_metrics(self, output, input):
     output_id = output.topk(1)[1].squeeze(-1)
     pack = Pack()
     loss = calculate_loss(output, input.tgt_for_metric)
     assert not t.isinf(loss)
     output_str = [self.vocab.convert_id2str(i) for i in output_id]
     tgt_str = [self.vocab.convert_id2str(i) for i in input.tgt_for_metric]
     cer = sum(
         [calculate_cer(i[0], i[1])
          for i in zip(output_str, tgt_str)]) * 100 / len(output_str)
     pack.add(loss=loss, cer=t.Tensor([cer]))
     return pack
Example #2
0
 def cal_metrics(self, output, input):
     pack = Pack()
     pred, gold = output.pred, output.gold
     loss, n_correct = cal_performance(pred, gold)
     output_id = pred.topk(1)[1].squeeze(-1)
     assert not t.isinf(loss)
     output_str = [self.vocab.convert_id2str(i) for i in output_id]
     tgt_str = [self.vocab.convert_id2str(i) for i in gold]
     cer = sum(
         [calculate_cer(i[0], i[1])
          for i in zip(output_str, tgt_str)]) * 100 / len(output_str)
     pack.add(loss=loss, cer=t.Tensor([cer]))
     #pack.add(loss=loss)
     return pack
Example #3
0
 def forward(self, input):
     wave, wave_len, text_for_input, text_len = input.wave, input.wave_len, input.tgt_for_input, input.tgt_len
     """
     #     Args:
     #         padded_input: N x Ti x D
     #         input_lengths: N
     #         padded_targets: N x To
     #     """
     encoder_padded_outputs, *_ = self.encoder(wave, wave_len)
     # pred is score before softmax
     pred, gold, *_ = self.decoder(text_for_input, encoder_padded_outputs,
                                   text_len)
     pack = Pack()
     pack.add(pred=pred, gold=gold)
     return pack
Example #4
0
    def __call__(self, batch):
        pack = Pack()
        wave = [i[0] for i in batch]
        tgt_for_input = [i[1] for i in batch]
        tgt_for_metric = [i[2] for i in batch]
        wave, wave_len = Padder.pad_tri(wave, 0)
        tgt_for_input, tgt_for_input_len = Padder.pad_two(tgt_for_input, 0)
        tgt_for_metric, tgt_for_metric_len = Padder.pad_two(tgt_for_metric, 0)
        pack.add(wave=wave,
                 tgt_for_input=tgt_for_input.long(),
                 wave_len=t.Tensor(wave_len).long(),
                 tgt_len=t.Tensor(tgt_for_input_len).long())
        pack.add(tgt_for_metric=tgt_for_metric.long())
        if self.use_cuda:
            pack = pack.cuda()

        return pack
Example #5
0
 def cal_metric(self, model_output):
     metrics = Pack()
     metrics.add(loss=model_output.wave.sum())
     return metrics, None
Example #6
0
 def forward(self, pack):
     output = Pack()
     wave, wave_length = pack.wave, pack.wave_len
     output.add(wave=wave)
     return output