test_y = 1 - test_y # assert np.max(train_x) == 1, "train_x maximum is not 1, butfa {}.".format(np.max(train_x)) assert np.max(train_y) == 1, "train_y maximum is not 1, but {}.".format( np.max(train_y)) # assert np.max(test_x) <= 1, "test_x maximum is greater 1: {}.".format(np.max(test_x)) assert np.max(test_y) <= 1, "test_y maximum is greater 1: {}.".format( np.max(test_y)) print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) ############################################################################################################ # Preparation ############################################################################################################ if not os.path.exists(path_results): os.mkdir(path_results) path_saving = init.initialize_folder(algorithm=algorithm_name + "Tracker", base_folder=path_results) ############################################################################################################ # Model Training ############################################################################################################ if algorithm_name == "CycleGAN": raise elif algorithm_name == "Pix2PixGAN": raise elif algorithm_name == "CVAEGAN": init_params = { "x_dim": inpt_dim, "y_dim": opt_dim, "z_dim": z_dim, "enc_architecture": enc_architecture, "gen_architecture": gen_architecture,
elif dropout: len_adv = len(architecture_adv) [architecture_adv.insert(1+2*i, [tf.layers.dropout, {}]) for i in range(len_adv-1)] architecture_aux = [ [tf.layers.conv2d, {"filters": 64, "kernel_size": 2, "strides": 2, "activation": activation}], [tf.layers.conv2d, {"filters": 128, "kernel_size": 2, "strides": 2, "activation": activation}], [tf.layers.conv2d, {"filters": 256, "kernel_size": 2, "strides": 2, "activation": activation}], [tf.layers.conv2d, {"filters": 256, "kernel_size": 2, "strides": 2, "activation": activation}], ] ############################################################################################################ # Data loading ############################################################################################################ path_saving = init.initialize_folder(algorithm=algorithm, base_folder=path_results) path_loading += "/Batches" copyfile(path_loading+"/Scalers.pickle", path_saving+"/Scalers.pickle") with open(path_loading+"/BatchX_Logging.pickle", "rb") as f: logging_calo = pickle.load(f) with open(path_loading+"/BatchY_Logging.pickle", "rb") as f: logging_tracker = pickle.load(f) with open(path_loading+"/BatchX_Test.pickle", "rb") as f: test_calo = pickle.load(f) with open(path_loading+"/BatchY_Test.pickle", "rb") as f: test_tracker = pickle.load(f) path_x_batches = path_loading + "/BatchesX" path_y_batches = path_loading + "/BatchesY" nr_test = test_calo.shape[0]
architectures = GenerativeModel.load_from_json(architecture_path) enc_architecture = architectures["Encoder"] gen_architecture = architectures["Generator"] adversarial_architecture = architectures["Adversarial"] if is_patchGAN and is_wasserstein: adversarial_architecture[-1][1]["activation"] = tf.identity adversarial_architecture[-1][1]["filters"] = 1 elif is_patchGAN and not is_wasserstein: adversarial_architecture[-1][1]["activation"] = tf.nn.sigmoid adversarial_architecture[-1][1]["filters"] = 1 elif not is_patchGAN: adversarial_architecture[-1][1]["activation"] = tf.nn.leaky_relu path_saving = "../../../Results/Test" path_saving = init.initialize_folder(algorithm="CVAEGAN_", base_folder=path_saving) init_params = { "x_dim": inpt_dim, "y_dim": opt_dim, "z_dim": z_dim, "enc_architecture": enc_architecture, "gen_architecture": gen_architecture, "adversarial_architecture": adversarial_architecture, "folder": path_saving, "is_patchgan": is_patchGAN, "is_wasserstein": is_wasserstein } compile_params = { "loss": loss, "learning_rate": learning_rate,
architectures = GenerativeModel.load_from_json(architecture_path) enc_architecture = architectures["Encoder"] gen_architecture = architectures["Generator"] adversarial_architecture = architectures["Adversarial"] if is_patchGAN and is_wasserstein: adversarial_architecture[-1][1]["activation"] = tf.identity adversarial_architecture[-1][1]["filters"] = 1 elif is_patchGAN and not is_wasserstein: adversarial_architecture[-1][1]["activation"] = tf.nn.sigmoid adversarial_architecture[-1][1]["filters"] = 1 elif not is_patchGAN: adversarial_architecture[-1][1]["activation"] = tf.nn.leaky_relu path_saving = "../../../Results/Test" path_saving = init.initialize_folder(algorithm="BiCycleGAN_", base_folder=path_saving) print(path_saving) init_params = { "x_dim": inpt_dim, "y_dim": opt_dim, "z_dim": z_dim, "enc_architecture": enc_architecture, "gen_architecture": gen_architecture, "adversarial_architecture": adversarial_architecture, "folder": path_saving, "is_patchgan": is_patchGAN, "is_wasserstein": is_wasserstein } compile_params = { "loss": loss,
batch_log_step = int(len(x_train) / batch_size / 20) gen_steps = 1 label_smoothing = 0.95 architectures = GenerativeModel.load_from_json(architecture_path) gen_architecture = architectures["Generator"] disc_architecture = architectures["Discriminator"] if is_patchGAN: disc_architecture[-1][1]["activation"] = tf.nn.sigmoid disc_architecture[-1][1]["filters"] = 1 else: disc_architecture[-1][1]["activation"] = tf.nn.leaky_relu path_saving = "../../../Results/Test" path_saving = init.initialize_folder(algorithm="Pix2Pix_", base_folder=path_saving) init_params = { "x_dim": inpt_dim, "y_dim": opt_dim, "gen_architecture": gen_architecture, "disc_architecture": disc_architecture, "folder": path_saving, "is_patchgan": is_patchGAN } compile_params = { "loss": loss, "learning_rate": learning_rate, "learning_rate_disc": learning_rate_disc, "optimizer": optimizer, "lmbda": lmbda,