Example #1
0
def test_dump_and_load():
    res = gp_minimize(bench3, [(-2.0, 2.0)],
                      x0=[0.],
                      acq_func="LCB",
                      n_calls=2,
                      n_random_starts=0,
                      random_state=1)

    # Test normal dumping and loading
    with tempfile.TemporaryFile() as f:
        dump(res, f)
        f.seek(0)
        res_loaded = load(f)
    check_optimization_results_equality(res, res_loaded)
    assert_true("func" in res_loaded.specs["args"])

    # Test dumping without objective function
    with tempfile.TemporaryFile() as f:
        dump(res, f, store_objective=False)
        f.seek(0)
        res_loaded = load(f)
    check_optimization_results_equality(res, res_loaded)
    assert_true(not ("func" in res_loaded.specs["args"]))

    # Delete the objective function and dump the modified object
    del res.specs["args"]["func"]
    with tempfile.TemporaryFile() as f:
        dump(res, f, store_objective=False)
        f.seek(0)
        res_loaded = load(f)
    check_optimization_results_equality(res, res_loaded)
    assert_true(not ("func" in res_loaded.specs["args"]))
Example #2
0
def test_deadline_stopper():
    deadline = DeadlineStopper(0.0001)
    gp_minimize(bench3, [(-1.0, 1.0)],
                callback=deadline,
                n_calls=10,
                random_state=1)
    assert len(deadline.iter_time) == 1
    assert np.sum(deadline.iter_time) > deadline.total_time

    deadline = DeadlineStopper(60)
    gp_minimize(bench3, [(-1.0, 1.0)],
                callback=deadline,
                n_calls=10,
                random_state=1)
    assert len(deadline.iter_time) == 10
    assert np.sum(deadline.iter_time) < deadline.total_time
Example #3
0
def test_n_jobs():
    r_single = gp_minimize(bench3, [(-2.0, 2.0)],
                           acq_optimizer="lbfgs",
                           acq_func="EI",
                           n_calls=2,
                           n_random_starts=1,
                           random_state=1,
                           noise=1e-10)
    r_double = gp_minimize(bench3, [(-2.0, 2.0)],
                           acq_optimizer="lbfgs",
                           acq_func="EI",
                           n_calls=2,
                           n_random_starts=1,
                           random_state=1,
                           noise=1e-10,
                           n_jobs=2)
    assert_array_equal(r_single.x_iters, r_double.x_iters)
Example #4
0
def test_expected_minimum():
    res = gp_minimize(bench3, [(-2.0, 2.0)],
                      x0=[0.],
                      noise=1e-8,
                      n_calls=8,
                      n_random_starts=3,
                      random_state=1)

    x_min, f_min = expected_minimum(res, random_state=1)
    x_min2, f_min2 = expected_minimum(res, random_state=1)

    assert f_min <= res.fun  # true since noise ~= 0.0
    assert x_min == x_min2
    assert f_min == f_min2
Example #5
0
def test_use_given_estimator():
    """ Test that gp_minimize does not use default estimator if one is passed
    in explicitly. """
    domain = [(1.0, 2.0), (3.0, 4.0)]
    noise_correct = 1e+5
    noise_fake = 1e-10
    estimator = cook_estimator("GP", domain, noise=noise_correct)
    res = gp_minimize(branin,
                      domain,
                      n_calls=1,
                      n_random_starts=1,
                      base_estimator=estimator,
                      noise=noise_fake)

    assert res['models'][-1].noise == noise_correct
Example #6
0
def check_minimize(func,
                   y_opt,
                   bounds,
                   acq_optimizer,
                   acq_func,
                   margin,
                   n_calls,
                   n_random_starts=10):
    r = gp_minimize(func,
                    bounds,
                    acq_optimizer=acq_optimizer,
                    acq_func=acq_func,
                    n_random_starts=n_random_starts,
                    n_calls=n_calls,
                    random_state=1,
                    noise=1e-10)
    assert_less(r.fun, y_opt + margin)
def test_defaults_are_equivalent():
    # check that the defaults of Optimizer reproduce the defaults of
    # gp_minimize
    space = [(-5., 10.), (0., 15.)]
    #opt = Optimizer(space, 'ET', acq_func="EI", random_state=1)
    opt = Optimizer(space, random_state=1)

    for n in range(12):
        x = opt.ask()
        res_opt = opt.tell(x, branin(x))

    #res_min = forest_minimize(branin, space, n_calls=12, random_state=1)
    res_min = gp_minimize(branin, space, n_calls=12, random_state=1)

    assert res_min.space == res_opt.space
    # tolerate small differences in the points sampled
    assert np.allclose(res_min.x_iters, res_opt.x_iters)  # , atol=1e-5)
    assert np.allclose(res_min.x, res_opt.x)  # , atol=1e-5)
Example #8
0
def test_gpr_default():
    """Smoke test that gp_minimize does not fail for default values."""
    gp_minimize(branin, ((-5.0, 10.0), (0.0, 15.0)),
                n_random_starts=1,
                n_calls=2)
Example #9
0
from ProcessOptimizer.plots import plot_objective
from ProcessOptimizer import bokeh_plot

# For reproducibility
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
plt.set_cmap("viridis")

SPACE = [
    Integer(1, 20, name='max_depth'),
    Integer(2, 100, name='min_samples_split'),
    Integer(5, 30, name='min_samples_leaf'),
    Integer(1, 30, name='max_features'),
    Categorical(list('abc'), name='dummy'),
    Categorical(['gini', 'entropy'], name='criterion'),
    Categorical(list('def'), name='dummy'),
]


def objective(params):
    clf = DecisionTreeClassifier(**{
        dim.name: val
        for dim, val in zip(SPACE, params) if dim.name != 'dummy'
    })
    return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))


result = gp_minimize(objective, SPACE, n_calls=20)

bokeh_plot.start(result)
Example #10
0
from ProcessOptimizer import bokeh_plot
# For reproducibility
import numpy as np
np.random.seed(123)
plt.set_cmap("viridis")
# Here we define a function that we evaluate.


def funny_func(x):
    s = 0
    for i in range(len(x)):
        s += (x[i])**2
    return s


# We run forest_minimize on the function
bounds = [
    (-1, 1.),
] * 7
n_calls = 30

result = gp_minimize(funny_func,
                     bounds,
                     n_calls=n_calls,
                     n_random_starts=20,
                     acq_optimizer="auto",
                     acq_func="gp_hedge",
                     random_state=4)

bokeh_plot.start(result)