Example #1
0
def Matching(cf):

    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST


    I0 = common.LoadITKImage(cf.study.I0, mType)
    I1 = common.LoadITKImage(cf.study.I1, mType)
    #ca.DivC_I(I0,255.0)
    #ca.DivC_I(I1,255.0)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    
    #common.DebugHere()
    # TODO: need to work on these
    t = [x*1./cf.optim.nTimeSteps for x in range(cf.optim.nTimeSteps+1)]
    checkpointinds = range(1,len(t))
    checkpointstates =  [(ca.Field3D(grid,mType),ca.Field3D(grid,mType)) for idx in checkpointinds]

    p = MatchingVariables(I0,I1, cf.vectormomentum.sigma, t,checkpointinds, checkpointstates, cf.vectormomentum.diffOpParams[0], cf.vectormomentum.diffOpParams[1], cf.vectormomentum.diffOpParams[2], cf.optim.Niter, cf.optim.stepSize, cf.optim.maxPert, cf.optim.nTimeSteps, integMethod = cf.optim.integMethod, optMethod=cf.optim.method, nInv=cf.optim.NIterForInverse,plotEvery=cf.io.plotEvery, plotSlice = cf.io.plotSlice, quiverEvery = cf.io.quiverEvery, outputPrefix = cf.io.outputPrefix)

    RunMatching(p)

    # write output
    if cf.io.outputPrefix is not None: 
        # reset all variables by shooting once, may have been overwritten
        CAvmCommon.IntegrateGeodesic(p.m0,p.t,p.diffOp,\
                          p.m, p.g, p.ginv,\
                          p.scratchV1, p.scratchV2,p. scratchV3,\
                          p.checkpointstates, p.checkpointinds,\
                          Ninv=p.nInv, integMethod = p.integMethod)
        common.SaveITKField(p.m0, cf.io.outputPrefix+"m0.mhd")
        common.SaveITKField(p.ginv, cf.io.outputPrefix+"phiinv.mhd")
        common.SaveITKField(p.g, cf.io.outputPrefix+"phi.mhd")
def main():

	secNum = sys.argv[1]
	mkyNum = sys.argv[2]
	channel = sys.argv[3]
	region = str(sys.argv[4])

	conf_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/src_registration/'
	side_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/src_registration/'
	save_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/sidelight_registered/'

	# DIC = '/home/sci/blakez/Reflect Affine/DIC_to_Reflect.txt'
	src_pt = conf_dir + 'M{0}/section_{1}/{2}/section_{1}_confocal_relation_with_sidelight.txt'.format(mkyNum, secNum, region)
	tar_pt = side_dir + 'M{0}/section_{1}/section_{1}_sidelight_relation_with_confocal.txt'.format(mkyNum, secNum)
	# SID = '/home/sci/blakez/Reflect Affine/sidelight_to_DIC.txt'

	src_im = common.LoadITKImage(conf_dir + 'M{0}/section_{1}/{3}/Ch{2}/M{0}_{1}_LGN_RHS_Ch{2}_z00.tif'.format(mkyNum, secNum, channel, region))
	# tar_im = common.LoadITKImage('M{0}/{1}/Crop_ThirdNerve_EGFP_z16.tiff'.format(mkyNum, secNum))

	# The points need to be chosen in the origin corrected sidescape for downstream purposes
	affine = load_and_solve(tar_pt, src_pt)
	out_grid = bb_grid_solver(src_im, affine)

	z_stack = []
	num_slices = len(glob.glob(conf_dir + 'M{0}/section_{1}/{3}/Ch{2}/*'.format(mkyNum, secNum, channel, region)))

	for z in range(0, num_slices):

		src_im = common.LoadITKImage(conf_dir + 'M{0}/section_{1}/{4}/Ch{2}/M{0}_{1}_LGN_RHS_Ch{2}_z{3}.tif'.format(mkyNum, secNum, channel, str(z).zfill(2), region))
		aff_im = ca.Image3D(out_grid, ca.MEM_HOST)
		cc.ApplyAffineReal(aff_im, src_im, affine)
		common.SaveITKImage(aff_im, save_dir + 'M{0}/section_{1}/{4}/Ch{2}/M{0}_01_section_{1}_LGN_RHS_Ch{2}_conf_aff_sidelight_z{3}.tiff'.format(mkyNum, secNum, channel, str(z).zfill(2), region))
		z_stack.append(aff_im)
		print('==> Done with {0}/{1}'.format(z, num_slices - 1))


	stacked = cc.Imlist_to_Im(z_stack)
	stacked.setSpacing(ca.Vec3Df(out_grid.spacing()[0], out_grid.spacing()[1], 0.03/num_slices))
	common.SaveITKImage(stacked, save_dir + 'M{0}/section_{1}/{3}/Ch{2}/M{0}_01_section_{1}_Ch{2}_conf_aff_sidelight_stack.nrrd'.format(mkyNum, secNum, channel, region))
	common.DebugHere()
	if channel==0:
		cc.WriteGrid(stacked.grid(), save_dir + 'M{0}/section_{1}/{2}/affine_registration_grid.txt'.format(mkyNum, secNum, region))
def Loader(cfOb, memT):
    '''Function for loading all of the images. All images get normalized between 0 and 1'''

    #Load Source Images
    bfiSrc = cc.LoadColorMHA(
        pth.expanduser(secOb.bfiSrcPath + cfOb.bfiSrcName), memT)
    ssiSrc = common.LoadITKImage(
        pth.expanduser(secOb.ssiSrcPath + cfOb.ssiSrcName), memT)
    ssiSrc /= ca.Max(ssiSrc)

    #Load Mask Image
    bfiMsk = common.LoadITKImage(
        pth.expanduser(secOb.bfiMskPath + cfOb.bfiMskName), memT)
    bfiMsk /= ca.Max(bfiMsk)
    bfiMsk.setGrid(bfiSrc.grid())
    ssiMsk = common.LoadITKImage(
        pth.expanduser(secOb.ssiMskPath + cfOb.ssiMskName), memT)
    ssiMsk /= ca.Max(ssiMsk)

    return ssiSrc, bfiSrc, ssiMsk, bfiMsk
def intensity_normalization_histeq(args):
    for i in range(0, len(args.input_images)):
        image = common.LoadITKImage(args.output_images[i], ca.MEM_HOST)
        grid = image.grid()
        image_np = common.AsNPCopy(image)
        nan_mask = np.isnan(image_np)
        image_np[nan_mask] = 0
        image_np /= np.amax(image_np)

        # perform histogram equalization if needed
        if args.histeq:
            image_np[image_np != 0] = exposure.equalize_hist(
                image_np[image_np != 0])
        image_result = common.ImFromNPArr(image_np, ca.MEM_HOST)
        image_result.setGrid(grid)
        common.SaveITKImage(image_result, args.output_images[i])
def main():
    secNum = sys.argv[1]
    mkyNum = sys.argv[2]
    region = str(sys.argv[3])
    # channel = sys.argv[3]
    ext = 'M{0}/section_{1}/{2}/'.format(mkyNum, secNum, region)
    ss_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/'
    conf_dir = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/confocal/'
    memT = ca.MEM_DEVICE

    try:
        with open(
                ss_dir +
                'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt'
                .format(mkyNum, secNum), 'r') as f:
            region_dict = json.load(f)
            f.close()
    except IOError:
        region_dict = {}
        region_dict[region] = {}
        region_dict['size'] = map(
            int,
            raw_input("What is the size of the full resolution image x,y? ").
            split(','))
        region_dict[region]['bbx'] = map(
            int,
            raw_input(
                "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? "
            ).split(','))
        region_dict[region]['bby'] = map(
            int,
            raw_input(
                "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? "
            ).split(','))

    if region not in region_dict:
        region_dict[region] = {}
        region_dict[region]['bbx'] = map(
            int,
            raw_input(
                "What are the x indicies of the bounding box (Matlab Format x_start,x_stop? "
            ).split(','))
        region_dict[region]['bby'] = map(
            int,
            raw_input(
                "What are the y indicies of the bounding box (Matlab Format y_start,y_stop? "
            ).split(','))

    img_region = common.LoadITKImage(
        ss_dir +
        'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_{2}.tiff'.
        format(mkyNum, secNum, region), ca.MEM_HOST)
    ssiSrc = common.LoadITKImage(
        ss_dir +
        'src_registration/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0.nrrd'
        .format(mkyNum, secNum), ca.MEM_HOST)
    bfi_df = common.LoadITKField(
        ss_dir +
        'Blockface_registered/M{0}/section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0_to_bfi_real.mha'
        .format(mkyNum, secNum), ca.MEM_DEVICE)

    # Figure out the same region in the low resolution image: There is a transpose from here to matlab so dimensions are flipped
    low_sz = ssiSrc.size().tolist()
    yrng_raw = [(low_sz[1] * region_dict[region]['bbx'][0]) /
                np.float(region_dict['size'][0]),
                (low_sz[1] * region_dict[region]['bbx'][1]) /
                np.float(region_dict['size'][0])]
    xrng_raw = [(low_sz[0] * region_dict[region]['bby'][0]) /
                np.float(region_dict['size'][1]),
                (low_sz[0] * region_dict[region]['bby'][1]) /
                np.float(region_dict['size'][1])]
    yrng = [np.int(np.floor(yrng_raw[0])), np.int(np.ceil(yrng_raw[1]))]
    xrng = [np.int(np.floor(xrng_raw[0])), np.int(np.ceil(xrng_raw[1]))]
    low_sub = cc.SubVol(ssiSrc, xrng, yrng)

    # Figure out the grid for the sub region in relation to the sidescape
    originout = [
        ssiSrc.origin().x + ssiSrc.spacing().x * xrng[0],
        ssiSrc.origin().y + ssiSrc.spacing().y * yrng[0], 0
    ]
    spacingout = [
        (low_sub.size().x * ssiSrc.spacing().x) / (img_region.size().x),
        (low_sub.size().y * ssiSrc.spacing().y) / (img_region.size().y), 1
    ]

    gridout = cc.MakeGrid(img_region.size().tolist(), spacingout, originout)
    img_region.setGrid(gridout)

    only_sub = np.zeros(ssiSrc.size().tolist()[0:2])
    only_sub[xrng[0]:xrng[1], yrng[0]:yrng[1]] = np.squeeze(low_sub.asnp())
    only_sub = common.ImFromNPArr(only_sub)
    only_sub.setGrid(ssiSrc.grid())

    # Deform the only sub region to
    only_sub.toType(ca.MEM_DEVICE)
    def_sub = ca.Image3D(bfi_df.grid(), bfi_df.memType())
    cc.ApplyHReal(def_sub, only_sub, bfi_df)
    def_sub.toType(ca.MEM_HOST)

    # Now have to find the bounding box in the deformation space (bfi space)
    if 'deformation_bbx' not in region_dict[region]:
        bb_def = np.squeeze(pp.LandmarkPicker([np.squeeze(def_sub.asnp())]))
        bb_def_y = [bb_def[0][0], bb_def[1][0]]
        bb_def_x = [bb_def[0][1], bb_def[1][1]]
        region_dict[region]['deformation_bbx'] = bb_def_x
        region_dict[region]['deformation_bby'] = bb_def_y

    with open(
            ss_dir +
            'src_registration/M{0}/section_{1}/M{0}_01_section_{1}_regions.txt'
            .format(mkyNum, secNum), 'w') as f:
        json.dump(region_dict, f)
        f.close()

    # Now need to extract the region and create a deformation and image that have the same resolution as the img_region
    deform_sub = cc.SubVol(bfi_df, region_dict[region]['deformation_bbx'],
                           region_dict[region]['deformation_bby'])

    common.DebugHere()
    sizeout = [
        int(
            np.ceil((deform_sub.size().x * deform_sub.spacing().x) /
                    img_region.spacing().x)),
        int(
            np.ceil((deform_sub.size().y * deform_sub.spacing().y) /
                    img_region.spacing().y)), 1
    ]

    region_grid = cc.MakeGrid(sizeout,
                              img_region.spacing().tolist(),
                              deform_sub.origin().tolist())

    def_im_region = ca.Image3D(region_grid, deform_sub.memType())
    up_deformation = ca.Field3D(region_grid, deform_sub.memType())

    img_region.toType(ca.MEM_DEVICE)
    cc.ResampleWorld(up_deformation, deform_sub,
                     ca.BACKGROUND_STRATEGY_PARTIAL_ZERO)
    cc.ApplyHReal(def_im_region, img_region, up_deformation)

    ss_out = ss_dir + 'Blockface_registered/M{0}/section_{1}/{2}/'.format(
        mkyNum, secNum, region)

    if not pth.exists(pth.expanduser(ss_out)):
        os.mkdir(pth.expanduser(ss_out))

    common.SaveITKImage(
        def_im_region,
        pth.expanduser(ss_out) +
        'M{0}_01_section_{1}_{2}_def_to_bfi.nrrd'.format(
            mkyNum, secNum, region))
    common.SaveITKImage(
        def_im_region,
        pth.expanduser(ss_out) +
        'M{0}_01_section_{1}_{2}_def_to_bfi.tiff'.format(
            mkyNum, secNum, region))
    del img_region, def_im_region, ssiSrc, deform_sub

    # Now apply the same deformation to the confocal images
    conf_grid = cc.LoadGrid(
        conf_dir +
        'sidelight_registered/M{0}/section_{1}/{2}/affine_registration_grid.txt'
        .format(mkyNum, secNum, region))
    cf_out = conf_dir + 'blockface_registered/M{0}/section_{1}/{2}/'.format(
        mkyNum, secNum, region)
    # confocal.toType(ca.MEM_DEVICE)
    # def_conf = ca.Image3D(region_grid, deform_sub.memType())
    # cc.ApplyHReal(def_conf, confocal, up_deformation)

    for channel in range(0, 4):
        z_stack = []
        num_slices = len(
            glob.glob(conf_dir +
                      'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/*.tiff'.
                      format(mkyNum, secNum, channel, region)))
        for z in range(0, num_slices):
            src_im = common.LoadITKImage(
                conf_dir +
                'sidelight_registered/M{0}/section_{1}/{3}/Ch{2}/M{0}_01_section_{1}_LGN_RHS_Ch{2}_conf_aff_sidelight_z{4}.tiff'
                .format(mkyNum, secNum, channel, region,
                        str(z).zfill(2)))
            src_im.setGrid(
                cc.MakeGrid(
                    ca.Vec3Di(conf_grid.size().x,
                              conf_grid.size().y, 1), conf_grid.spacing(),
                    conf_grid.origin()))
            src_im.toType(ca.MEM_DEVICE)
            def_im = ca.Image3D(region_grid, ca.MEM_DEVICE)
            cc.ApplyHReal(def_im, src_im, up_deformation)
            def_im.toType(ca.MEM_HOST)
            common.SaveITKImage(
                def_im, cf_out +
                'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.tiff'
                .format(mkyNum, secNum, channel, region,
                        str(z).zfill(2)))
            if z == 0:
                common.SaveITKImage(
                    def_im, cf_out +
                    'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_z{4}.nrrd'
                    .format(mkyNum, secNum, channel, region,
                            str(z).zfill(2)))
            z_stack.append(def_im)
            print('==> Done with Ch {0}: {1}/{2}'.format(
                channel, z, num_slices - 1))
        stacked = cc.Imlist_to_Im(z_stack)
        stacked.setSpacing(
            ca.Vec3Df(region_grid.spacing().x,
                      region_grid.spacing().y,
                      conf_grid.spacing().z))
        common.SaveITKImage(
            stacked, cf_out +
            'Ch{2}/M{0}_01_section_{1}_{3}_Ch{2}_conf_def_blockface_stack.nrrd'
            .format(mkyNum, secNum, channel, region))
        if channel == 0:
            cc.WriteGrid(
                stacked.grid(),
                cf_out + 'deformed_registration_grid.txt'.format(
                    mkyNum, secNum, region))
def BuildAtlas(cf):
    """Worker for running Atlas construction on a subset of individuals.
    Runs Atlas on this subset sequentially. The variations retuned are
    summed up to get update for all individuals
    """

    localRank = Compute.GetMPIInfo()['local_rank']
    rank = Compute.GetMPIInfo()['rank']

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0
    cf.study.numSubjects = len(cf.study.subjectImages)

    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(AtlasConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)
    #common.DebugHere()

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes

    if cf.compute.useMPI and (cf.study.numSubjects < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    # subdivide data, create subsets for this thread to work on
    nodeSubjectIds = cf.study.subjectIds[rank::cf.compute.numProcesses]
    nodeImages = cf.study.subjectImages[rank::cf.compute.numProcesses]
    nodeWeights = cf.study.subjectWeights[rank::cf.compute.numProcesses]

    numLocalSubjects = len(nodeImages)
    print 'rank:', rank, ', localRank:', localRank, ', nodeImages:', nodeImages, ', nodeWeights:', nodeWeights

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    # load intercepts
    J_array = [
        common.LoadITKImage(f, mType) if isinstance(f, str) else f
        for f in nodeImages
    ]

    # get imGrid from data
    imGrid = J_array[0].grid()

    # atlas image
    atlas = ca.Image3D(imGrid, mType)

    # allocate memory to store only the initial momenta for each individual in this thread
    m_array = [ca.Field3D(imGrid, mType) for i in range(numLocalSubjects)]

    # allocate only one copy of scratch memory to be reused for each local individual in this thread in loop
    p = WarpVariables(imGrid,
                      mType,
                      cf.vectormomentum.diffOpParams[0],
                      cf.vectormomentum.diffOpParams[1],
                      cf.vectormomentum.diffOpParams[2],
                      cf.optim.NIterForInverse,
                      cf.vectormomentum.sigma,
                      cf.optim.stepSize,
                      integMethod=cf.optim.integMethod)

    # memory to accumulate numerators and denominators for atlas from
    # local individuals which will be summed across MPI threads
    sumSplatI = ca.Image3D(imGrid, mType)
    sumJac = ca.Image3D(imGrid, mType)

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # need some host memory in np array format for MPI reductions
    if cf.compute.useMPI:
        mpiImageBuff = None if mType == ca.MEM_HOST else ca.Image3D(
            imGrid, ca.MEM_HOST)

    t = [
        x * 1. / (cf.optim.nTimeSteps) for x in range(cf.optim.nTimeSteps + 1)
    ]
    cpinds = range(1, len(t))
    msmtinds = [
        len(t) - 2
    ]  # since t=0 is not in cpinds, thats just identity deformation so not checkpointed
    cpstates = [(ca.Field3D(imGrid, mType), ca.Field3D(imGrid, mType))
                for idx in cpinds]
    gradAtMsmts = [ca.Image3D(imGrid, mType) for idx in msmtinds]

    EnergyHistory = []

    # TODO: better initializations
    # initialize atlas image with zeros.
    ca.SetMem(atlas, 0.0)
    # initialize momenta with zeros

    for m0_individual in m_array:
        ca.SetMem(m0_individual, 0.0)
    '''
    # initial template image
    ca.SetMem(groupState.I0, 0.0)
    tmp = ca.ManagedImage3D(imGrid, mType)

    for tdisc in tdiscGroup:
        if tdisc.J is not None:
            ca.Copy(tmp, tdisc.J)
            groupState.I0 += tmp
    del tmp
    if cf.compute.useMPI:
        Compute.Reduce(groupState.I0, mpiImageBuff)
    
    # divide by total num subjects
    groupState.I0 /= cf.study.numSubjects
    '''

    # preprocessinput

    # assign atlas reference to p.I0. This reference will not change.
    p.I0 = atlas

    # run the loop
    for it in range(cf.optim.Niter):
        # run one iteration of warp for each individual and update
        # their own initial momenta and also accumulate SplatI and Jac
        ca.SetMem(sumSplatI, 0.0)
        ca.SetMem(sumJac, 0.0)
        TotalVEnergy = np.array([0.0])
        TotalIEnergy = np.array([0.0])

        for itsub in range(numLocalSubjects):
            # initializations for this subject, this only assigns
            # reference to image variables
            p.m0 = m_array[itsub]
            Imsmts = [J_array[itsub]]

            # run warp iteration
            VEnergy, IEnergy = RunWarpIteration(nodeSubjectIds[itsub], cf, p,
                                                t, Imsmts, cpinds, cpstates,
                                                msmtinds, gradAtMsmts, it)

            # gather relevant results
            ca.Add_I(sumSplatI, p.sumSplatI)
            ca.Add_I(sumJac, p.sumJac)
            TotalVEnergy[0] += VEnergy
            TotalIEnergy[0] += IEnergy

        # if there are multiple nodes we'll need to sum across processes now
        if cf.compute.useMPI:
            # do an MPI sum
            Compute.Reduce(sumSplatI, mpiImageBuff)
            Compute.Reduce(sumJac, mpiImageBuff)

            # also sum up energies of other nodes
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            TotalVEnergy,
                                            op=mpi4py.MPI.SUM)
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            TotalIEnergy,
                                            op=mpi4py.MPI.SUM)

        EnergyHistory.append([TotalVEnergy[0], TotalIEnergy[0]])

        # now divide to get the new atlas image
        ca.Div(atlas, sumSplatI, sumJac)

        # keep track of energy in this iteration
        if isReporter and cf.io.plotEvery > 0 and ((
            (it + 1) % cf.io.plotEvery == 0) or (it == cf.optim.Niter - 1)):
            # plots
            AtlasPlots(cf, p, atlas, m_array, EnergyHistory)

        if isReporter:
            # print out energy
            (VEnergy, IEnergy) = EnergyHistory[-1]
            print "Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Image)'

    # write output images and fields
    AtlasWriteOutput(cf, atlas, m_array, nodeSubjectIds, isReporter)
def MatchingImageMomenta(cf):
    """Runs matching for image momenta pair."""
    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)

    common.DebugHere()
    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingImageMomentaConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    I0 = common.LoadITKImage(cf.study.I, mType)
    m0 = common.LoadITKField(cf.study.m, mType)
    J1 = common.LoadITKImage(cf.study.J, mType)
    n1 = common.LoadITKField(cf.study.n, mType)

    # get imGrid from data
    imGrid = I0.grid()

    # create time array with checkpointing info for this geodesic to be estimated
    (s, scratchInd,
     rCpinds) = CAvmHGM.HGMSetUpTimeArray(cf.optim.nTimeSteps, [1.0], 0.001)
    tDiscGeodesic = CAvmHGMCommon.HGMSetupTimeDiscretizationResidual(
        s, rCpinds, imGrid, mType)

    # create the state variable for geodesic that is going to hold all info
    p0 = ca.Field3D(imGrid, mType)
    geodesicState = CAvmHGMCommon.HGMResidualState(
        I0,
        p0,
        imGrid,
        mType,
        cf.vectormomentum.diffOpParams[0],
        cf.vectormomentum.diffOpParams[1],
        cf.vectormomentum.diffOpParams[2],
        s,
        cf.optim.NIterForInverse,
        1.0,
        cf.vectormomentum.sigmaM,
        cf.vectormomentum.sigmaI,
        cf.optim.stepSize,
        integMethod=cf.optim.integMethod)
    # initialize with zero
    ca.SetMem(geodesicState.p0, 0.0)
    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)
    EnergyHistory = []
    # run the loop
    for it in range(cf.optim.Niter):
        # shoot the geodesic forward
        CAvmHGMCommon.HGMIntegrateGeodesic(geodesicState.p0, geodesicState.s,
                                           geodesicState.diffOp,
                                           geodesicState.p, geodesicState.rho,
                                           geodesicState.rhoinv, tDiscGeodesic,
                                           geodesicState.Ninv,
                                           geodesicState.integMethod)
        # integrate the geodesic backward
        CAvmHGMCommon.HGMIntegrateAdjointsResidual(geodesicState,
                                                   tDiscGeodesic, m0, J1, n1)

        # TODO: verify it should just be log map/simple image matching when sigmaM=\infty
        # gradient descent step for geodesic.p0
        CAvmHGMCommon.HGMTakeGradientStepResidual(geodesicState)

        # compute and print energy
        (VEnergy, IEnergy,
         MEnergy) = MatchingImageMomentaComputeEnergy(geodesicState, m0, J1,
                                                      n1)
        EnergyHistory.append(
            [VEnergy + IEnergy + MEnergy, VEnergy, IEnergy, MEnergy])
        print "Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy + MEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Image Match) + ', MEnergy, '(Momenta Match)'

        # plots
        if cf.io.plotEvery > 0 and (((it + 1) % cf.io.plotEvery == 0) or
                                    (it == cf.optim.Niter - 1)):
            MatchingImageMomentaPlots(cf,
                                      geodesicState,
                                      tDiscGeodesic,
                                      EnergyHistory,
                                      m0,
                                      J1,
                                      n1,
                                      writeOutput=True)

    # write output
    MatchingImageMomentaWriteOuput(cf, geodesicState)
Example #8
0
def predict_image(args, moving_images, target_images, output_prefixes):
    if (args.use_CPU_for_shooting):
        mType = ca.MEM_HOST
    else:
        mType = ca.MEM_DEVICE

    # load the prediction network
    predict_network_config = torch.load(args.prediction_parameter)
    prediction_net = create_net(args, predict_network_config);

    batch_size = args.batch_size
    patch_size = predict_network_config['patch_size']
    input_batch = torch.zeros(batch_size, 2, patch_size, patch_size, patch_size).cuda()

    # use correction network if required
    if args.use_correction:
        correction_network_config = torch.load(args.correction_parameter);
        correction_net = create_net(args, correction_network_config);
    else:
        correction_net = None;

    # start prediction
    for i in range(0, len(moving_images)):

        common.Mkdir_p(os.path.dirname(output_prefixes[i]))
        if (args.affine_align):
            # Perform affine registration to both moving and target image to the ICBM152 atlas space.
            # Registration is done using Niftireg.
            call(["reg_aladin",
                  "-noSym", "-speeeeed", "-ref", args.atlas ,
                  "-flo", moving_images[i],
                  "-res", output_prefixes[i]+"moving_affine.nii",
                  "-aff", output_prefixes[i]+'moving_affine_transform.txt'])

            call(["reg_aladin",
                  "-noSym", "-speeeeed" ,"-ref", args.atlas ,
                  "-flo", target_images[i],
                  "-res", output_prefixes[i]+"target_affine.nii",
                  "-aff", output_prefixes[i]+'target_affine_transform.txt'])

            moving_image = common.LoadITKImage(output_prefixes[i]+"moving_affine.nii", mType)
            target_image = common.LoadITKImage(output_prefixes[i]+"target_affine.nii", mType)
        else:
            moving_image = common.LoadITKImage(moving_images[i], mType)
            target_image = common.LoadITKImage(target_images[i], mType)

        #preprocessing of the image
        moving_image_np = preprocess_image(moving_image, args.histeq);
        target_image_np = preprocess_image(target_image, args.histeq);

        grid = moving_image.grid()
        #moving_image = ca.Image3D(grid, mType)
        #target_image = ca.Image3D(grid, mType)
        moving_image_processed = common.ImFromNPArr(moving_image_np, mType)
        target_image_processed = common.ImFromNPArr(target_image_np, mType)
        moving_image.setGrid(grid)
        target_image.setGrid(grid)

        # Indicating whether we are using the old parameter files for the Neuroimage experiments (use .t7 files from matlab .h5 format)
        predict_transform_space = False
        if 'matlab_t7' in predict_network_config:
            predict_transform_space = True
        # run actual prediction
        prediction_result = util.predict_momentum(moving_image_np, target_image_np, input_batch, batch_size, patch_size, prediction_net, predict_transform_space);
        m0 = prediction_result['image_space']
        #convert to registration space and perform registration
        m0_reg = common.FieldFromNPArr(m0, mType);

        #perform correction
        if (args.use_correction):
            registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config)
            target_inv_np = common.AsNPCopy(registration_result['I1_inv'])

            correct_transform_space = False
            if 'matlab_t7' in correction_network_config:
                correct_transform_space = True
            correction_result = util.predict_momentum(moving_image_np, target_inv_np, input_batch, batch_size, patch_size, correction_net, correct_transform_space);
            m0_correct = correction_result['image_space']
            m0 += m0_correct;
            m0_reg = common.FieldFromNPArr(m0, mType);

        registration_result = registration_methods.geodesic_shooting(moving_image, target_image, m0_reg, args.shoot_steps, mType, predict_network_config)

        #endif

        write_result(registration_result, output_prefixes[i]);
def GeodesicShooting(cf):

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(GeodesicShootingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.useCUDA else ca.MEM_HOST
    #common.DebugHere()
    I0 = common.LoadITKImage(cf.study.I0, mType)
    m0 = common.LoadITKField(cf.study.m0, mType)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    # set up diffOp
    if mType == ca.MEM_HOST:
        diffOp = ca.FluidKernelFFTCPU()
    else:
        diffOp = ca.FluidKernelFFTGPU()
    diffOp.setAlpha(cf.diffOpParams[0])
    diffOp.setBeta(cf.diffOpParams[1])
    diffOp.setGamma(cf.diffOpParams[2])
    diffOp.setGrid(grid)

    g = ca.Field3D(grid, mType)
    ginv = ca.Field3D(grid, mType)
    mt = ca.Field3D(grid, mType)
    It = ca.Image3D(grid, mType)
    t = [
        x * 1. / cf.integration.nTimeSteps
        for x in range(cf.integration.nTimeSteps + 1)
    ]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    scratchV1 = ca.Field3D(grid, mType)
    scratchV2 = ca.Field3D(grid, mType)
    scratchV3 = ca.Field3D(grid, mType)
    # scale momenta to shoot
    cf.study.scaleMomenta = float(cf.study.scaleMomenta)
    if abs(cf.study.scaleMomenta) > 0.000000:
        ca.MulC_I(m0, float(cf.study.scaleMomenta))
        CAvmCommon.IntegrateGeodesic(m0,t,diffOp, mt, g, ginv,\
                                     scratchV1,scratchV2,scratchV3,\
                                     keepstates=checkpointstates,keepinds=checkpointinds,
                                     Ninv=cf.integration.NIterForInverse, integMethod = cf.integration.integMethod)
    else:
        ca.Copy(It, I0)
        ca.Copy(mt, m0)
        ca.SetToIdentity(ginv)
        ca.SetToIdentity(g)

    # write output
    if cf.io.outputPrefix is not None:
        # scale back shotmomenta before writing
        if abs(cf.study.scaleMomenta) > 0.000000:
            ca.ApplyH(It, I0, ginv)
            ca.CoAd(mt, ginv, m0)
            ca.DivC_I(mt, float(cf.study.scaleMomenta))

        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
        common.SaveITKField(mt, cf.io.outputPrefix + "m1.mhd")
        common.SaveITKField(ginv, cf.io.outputPrefix + "phiinv.mhd")
        common.SaveITKField(g, cf.io.outputPrefix + "phi.mhd")
        GeodesicShootingPlots(g, ginv, I0, It, cf)
        if cf.io.saveFrames:
            SaveFrames(checkpointstates, checkpointinds, I0, It, m0, mt, cf)
Example #10
0
def BuildHGM(cf):
    """Worker for running Hierarchical Geodesic Model (HGM) 
n    for group geodesic estimation on a subset of individuals. 
    Runs HGM on this subset sequentially. The variations retuned
    are summed up to get update for all individuals"""

    size = Compute.GetMPIInfo()['size']
    rank = Compute.GetMPIInfo()['rank']
    name = Compute.GetMPIInfo()['name']
    localRank = Compute.GetMPIInfo()['local_rank']
    nodename = socket.gethostname()

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0
    cf.study.numSubjects = len(cf.study.subjectIntercepts)
    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(HGMConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)
    #common.DebugHere()

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes

    if cf.compute.useMPI and (cf.study.numSubjects < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    # subdivide data, create subsets for this thread to work on
    nodeSubjectIds = cf.study.subjectIds[rank::cf.compute.numProcesses]
    nodeIntercepts = cf.study.subjectIntercepts[rank::cf.compute.numProcesses]
    nodeSlopes = cf.study.subjectSlopes[rank::cf.compute.numProcesses]
    nodeBaselineTimes = cf.study.subjectBaselineTimes[rank::cf.compute.
                                                      numProcesses]
    sys.stdout.write(
        "This is process %d of %d with name: %s on machinename: %s and local rank: %d.\nnodeIntercepts: %s\n nodeSlopes: %s\n nodeBaselineTimes: %s\n"
        % (rank, size, name, nodename, localRank, nodeIntercepts, nodeSlopes,
           nodeBaselineTimes))

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    # load intercepts
    J = [
        common.LoadITKImage(f, mType) if isinstance(f, str) else f
        for f in nodeIntercepts
    ]

    # load slopes
    n = [
        common.LoadITKField(f, mType) if isinstance(f, str) else f
        for f in nodeSlopes
    ]

    # get imGrid from data
    imGrid = J[0].grid()

    # create time array with checkpointing info for group geodesic
    (t, Jind, gCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsGroup,
                                           nodeBaselineTimes, 0.0000001)
    tdiscGroup = CAvmHGMCommon.HGMSetupTimeDiscretizationGroup(
        t, J, n, Jind, gCpinds, mType, nodeSubjectIds)

    # create time array with checkpointing info for residual geodesic
    (s, scratchInd, rCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsResidual,
                                                 [1.0], 0.0000001)
    tdiscResidual = CAvmHGMCommon.HGMSetupTimeDiscretizationResidual(
        s, rCpinds, imGrid, mType)

    # create group state and residual state
    groupState = CAvmHGMCommon.HGMGroupState(
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsGroup[0],
        cf.vectormomentum.diffOpParamsGroup[1],
        cf.vectormomentum.diffOpParamsGroup[2],
        t,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeGroup,
        integMethod=cf.optim.integMethodGroup)

    #ca.Copy(groupState.I0, common.LoadITKImage('/usr/sci/projects/ADNI/nikhil/software/vectormomentumtest/TestData/FlowerData/Longitudinal/GroupGeodesic/I0.mhd', mType))

    # note that residual state is treated a scratch variable in this algorithm and reused for computing residual geodesics of multiple individual
    residualState = CAvmHGMCommon.HGMResidualState(
        None,
        None,
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsResidual[0],
        cf.vectormomentum.diffOpParamsResidual[1],
        cf.vectormomentum.diffOpParamsResidual[2],
        s,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeResidual,
        integMethod=cf.optim.integMethodResidual)

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # need some host memory in np array format for MPI reductions
    if cf.compute.useMPI:
        mpiImageBuff = None if mType == ca.MEM_HOST else ca.Image3D(
            imGrid, ca.MEM_HOST)
        mpiFieldBuff = None if mType == ca.MEM_HOST else ca.Field3D(
            imGrid, ca.MEM_HOST)
    for i in range(len(groupState.t) - 1, -1, -1):
        if tdiscGroup[i].J is not None:
            indx_last_individual = i
            break
    '''
    # initial template image
    ca.SetMem(groupState.I0, 0.0)
    tmp = ca.ManagedImage3D(imGrid, mType)

    for tdisc in tdiscGroup:
        if tdisc.J is not None:
            ca.Copy(tmp, tdisc.J)
            groupState.I0 += tmp
    del tmp
    if cf.compute.useMPI:
        Compute.Reduce(groupState.I0, mpiImageBuff)
    
    # divide by total num subjects
    groupState.I0 /= cf.study.numSubjects
    '''

    # run the loop

    for it in range(cf.optim.Niter):
        # compute HGM variation for group
        HGMGroupVariation(groupState, tdiscGroup, residualState, tdiscResidual,
                          cf.io.outputPrefix, rank, it)
        common.CheckCUDAError("Error after HGM iteration")
        # compute gradient for momenta (m is used as scratch)
        # if there are multiple nodes we'll need to sum across processes now
        if cf.compute.useMPI:
            # do an MPI sum
            Compute.Reduce(groupState.sumSplatI, mpiImageBuff)
            Compute.Reduce(groupState.sumJac, mpiImageBuff)
            Compute.Reduce(groupState.madj, mpiFieldBuff)
            # also sum up energies of other nodes
            # intercept
            Eintercept = np.array([groupState.EnergyHistory[-1][1]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eintercept,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][1] = Eintercept[0]

            Eslope = np.array([groupState.EnergyHistory[-1][2]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eslope,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][2] = Eslope[0]

        ca.Copy(groupState.m, groupState.m0)
        groupState.diffOp.applyInverseOperator(groupState.m)
        ca.Sub_I(groupState.m, groupState.madj)
        #groupState.diffOp.applyOperator(groupState.m)
        # now take gradient step in momenta for group
        if cf.optim.method == 'FIXEDGD':
            # take fixed stepsize gradient step
            ca.Add_MulC_I(groupState.m0, groupState.m, -cf.optim.stepSizeGroup)
        else:
            raise Exception("Unknown optimization scheme: " + cf.optim.method)
        # end if

        # now divide to get the new base image for group
        ca.Div(groupState.I0, groupState.sumSplatI, groupState.sumJac)

        # keep track of energy in this iteration
        if isReporter and cf.io.plotEvery > 0 and ((
            (it + 1) % cf.io.plotEvery == 0) or (it == cf.optim.Niter - 1)):
            HGMPlots(cf,
                     groupState,
                     tdiscGroup,
                     residualState,
                     tdiscResidual,
                     indx_last_individual,
                     writeOutput=True)

        if isReporter:
            (VEnergy, IEnergy, SEnergy) = groupState.EnergyHistory[-1]
            print datetime.datetime.now().time(
            ), " Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy + SEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Intercept) + ', SEnergy, '(Slope)'

    # write output images and fields
    HGMWriteOutput(cf, groupState, tdiscGroup, isReporter)
Example #11
0
    monkeyNum)

ssi_path = '/home/sci/blakez/korenbergNAS/3D_database/Working/Microscopic/side_light_microscope/Blockface_registered/M{0}/'.format(
    monkeyNum)
bfi_path = '/home/sci/blakez/korenbergNAS/3D_database/Working/Blockface/src_registration/M{0}/'.format(
    monkeyNum)

reg_list = []
aff_list = []
bfi_list = []

for sec in range(slicestart, slicefinish + 1):

    ssi_aff = common.LoadITKImage(
        ssi_path +
        'section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0_aff_bfi.nrrd'.format(
            monkeyNum,
            str(sec).zfill(4)), ca.MEM_HOST)
    ssi_reg = common.LoadITKImage(
        ssi_path +
        'section_{1}/frag0/M{0}_01_ssi_section_{1}_frag0_def_bfi.nrrd'.format(
            monkeyNum,
            str(sec).zfill(4)), ca.MEM_HOST)
    bfi_org = common.LoadITKImage(
        bfi_path + 'section_{1}/M{0}_01_slice{1}_seg_crop_hd1.mha'.format(
            monkeyNum,
            str(sec).zfill(4)), ca.MEM_HOST)

    bfi_list.append(bfi_org)

    if sec == slicestart:
Example #12
0
def predict_image(args):
    if (args.use_CPU_for_shooting):
        mType = ca.MEM_HOST
    else:
        mType = ca.MEM_DEVICE

    # load the prediction network
    predict_network_config = torch.load(args.prediction_parameter)
    prediction_net = create_net(args, predict_network_config)

    batch_size = args.batch_size
    patch_size = predict_network_config['patch_size']
    input_batch = torch.zeros(batch_size, 2, patch_size, patch_size,
                              patch_size).cuda()

    # start prediction
    for i in range(0, len(args.moving_image)):
        common.Mkdir_p(os.path.dirname(args.output_prefix[i]))
        if (args.affine_align):
            # Perform affine registration to both moving and target image to the ICBM152 atlas space.
            # Registration is done using Niftireg.
            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.moving_image[i], "-res",
                args.output_prefix[i] + "moving_affine.nii", "-aff",
                args.output_prefix[i] + 'moving_affine_transform.txt'
            ])

            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.target_image[i], "-res",
                args.output_prefix[i] + "target_affine.nii", "-aff",
                args.output_prefix[i] + 'target_affine_transform.txt'
            ])

            moving_image = common.LoadITKImage(
                args.output_prefix[i] + "moving_affine.nii", mType)
            target_image = common.LoadITKImage(
                args.output_prefix[i] + "target_affine.nii", mType)
        else:
            moving_image = common.LoadITKImage(args.moving_image[i], mType)
            target_image = common.LoadITKImage(args.target_image[i], mType)

        #preprocessing of the image
        moving_image_np = preprocess_image(moving_image, args.histeq)
        target_image_np = preprocess_image(target_image, args.histeq)

        grid = moving_image.grid()
        moving_image_processed = common.ImFromNPArr(moving_image_np, mType)
        target_image_processed = common.ImFromNPArr(target_image_np, mType)
        moving_image.setGrid(grid)
        target_image.setGrid(grid)

        predict_transform_space = False
        if 'matlab_t7' in predict_network_config:
            predict_transform_space = True
        # run actual prediction
        prediction_result = util.predict_momentum(moving_image_np,
                                                  target_image_np, input_batch,
                                                  batch_size, patch_size,
                                                  prediction_net,
                                                  predict_transform_space)

        m0 = prediction_result['image_space']
        m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi = common.AsNPCopy(registration_result['phiinv'])
        phi_square = np.power(phi, 2)

        for sample_iter in range(1, args.samples):
            print(sample_iter)
            prediction_result = util.predict_momentum(
                moving_image_np, target_image_np, input_batch, batch_size,
                patch_size, prediction_net, predict_transform_space)
            m0 += prediction_result['image_space']
            m0_reg = common.FieldFromNPArr(prediction_result['image_space'],
                                           mType)
            registration_result = registration_methods.geodesic_shooting(
                moving_image_processed, target_image_processed, m0_reg,
                args.shoot_steps, mType, predict_network_config)
            phi += common.AsNPCopy(registration_result['phiinv'])
            phi_square += np.power(
                common.AsNPCopy(registration_result['phiinv']), 2)

        m0_mean = np.divide(m0, args.samples)
        m0_reg = common.FieldFromNPArr(m0_mean, mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi_mean = registration_result['phiinv']
        phi_var = np.divide(phi_square, args.samples) - np.power(
            np.divide(phi, args.samples), 2)

        #save result
        common.SaveITKImage(registration_result['I1'],
                            args.output_prefix[i] + "I1.mhd")
        common.SaveITKField(phi_mean,
                            args.output_prefix[i] + "phiinv_mean.mhd")
        common.SaveITKField(common.FieldFromNPArr(phi_var, mType),
                            args.output_prefix[i] + "phiinv_var.mhd")
Example #13
0
def BuildGeoReg(cf):
    """Worker for running geodesic estimation on a subset of individuals
    """
    #common.DebugHere()
    localRank = Compute.GetMPIInfo()['local_rank']
    rank = Compute.GetMPIInfo()['rank']

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0

    # load filenames and times for all subjects
    (subjectsIds, subjectsImagePaths,
     subjectsTimes) = GeoRegLoadSubjectsDetails(cf.study.subjectFile)
    cf.study.numSubjects = len(subjectsIds)
    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(GeoRegConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes
    if cf.compute.useMPI and (len(subjectsIds) < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    nodeSubjectsIds = subjectsIds[rank::cf.compute.numProcesses]
    nodeSubjectsImagePaths = subjectsImagePaths[rank::cf.compute.numProcesses]
    nodeSubjectsTimes = subjectsTimes[rank::cf.compute.numProcesses]

    numLocalSubjects = len(nodeSubjectsImagePaths)
    if cf.study.initializationsFile is not None:
        (subjectsInitialImages,
         subjectsInitialMomenta) = GeoRegLoadSubjectsInitializations(
             cf.study.initializationsFile)
        nodeSubjectsInitialImages = subjectsInitialImages[rank::cf.compute.
                                                          numProcesses]
        nodeSubjectsInitialMomenta = subjectsInitialMomenta[rank::cf.compute.
                                                            numProcesses]

    print 'rank:', rank, ', localRank:', localRank, ', numberSubjects/TotalSubjects:', len(
        nodeSubjectsImagePaths
    ), '/', cf.study.numSubjects, ', nodeSubjectsImagePaths:', nodeSubjectsImagePaths, ', nodeSubjectsTimes:', nodeSubjectsTimes

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # setting gpuid should be handled in gpu
    # if using GPU  set device based on local rank
    #if cf.compute.useCUDA:
    #    ca.SetCUDADevice(localRank)

    # get image size information
    dummyImToGetGridInfo = common.LoadITKImage(nodeSubjectsImagePaths[0][0],
                                               mType)
    imGrid = dummyImToGetGridInfo.grid()
    if cf.study.setUnitSpacing:
        imGrid.setSpacing(ca.Vec3Df(1.0, 1.0, 1.0))
    if cf.study.setZeroOrigin:
        imGrid.setOrigin(ca.Vec3Df(0, 0, 0))
    #del dummyImToGetGridInfo;

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # allocate memory
    p = GeoRegVariables(imGrid,
                        mType,
                        cf.vectormomentum.diffOpParams[0],
                        cf.vectormomentum.diffOpParams[1],
                        cf.vectormomentum.diffOpParams[2],
                        cf.optim.NIterForInverse,
                        cf.vectormomentum.sigma,
                        cf.optim.stepSize,
                        integMethod=cf.optim.integMethod)
    # for each individual run geodesic regression for each subject
    for i in range(numLocalSubjects):

        # initializations for this subject
        if cf.study.initializationsFile is not None:
            # assuming the initializations are already preprocessed, in terms of intensities, origin and voxel scalings.
            p.I0 = common.LoadITKImage(nodeSubjectsInitialImages[i], mType)
            p.m0 = common.LoadITKField(nodeSubjectsInitialMomenta[i], mType)
        else:
            ca.SetMem(p.m0, 0.0)
            ca.SetMem(p.I0, 0.0)

        # allocate memory specific to this subject in steps a, b and c
        # a. create time array with checkpointing info for regression geodesic, allocate checkpoint memory
        (t, msmtinds, cpinds) = GeoRegSetUpTimeArray(cf.optim.nTimeSteps,
                                                     nodeSubjectsTimes[i],
                                                     0.001)
        cpstates = [(ca.Field3D(imGrid, mType), ca.Field3D(imGrid, mType))
                    for idx in cpinds]
        # b. allocate gradAtMeasurements of the length of msmtindex for storing residuals
        gradAtMsmts = [ca.Image3D(imGrid, mType) for idx in msmtinds]

        # c. load timepoint images for this subject
        Imsmts = [
            common.LoadITKImage(f, mType) if isinstance(f, str) else f
            for f in nodeSubjectsImagePaths[i]
        ]
        # reset stepsize if adaptive stepsize changed it inside
        p.stepSize = cf.optim.stepSize
        # preprocessimages
        GeoRegPreprocessInput(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                              cpstates, msmtinds, gradAtMsmts)

        # run regression for this subject
        # REMEMBER
        # msmtinds index into cpinds
        # gradAtMsmts is parallel to msmtinds
        # cpinds index into t
        EnergyHistory = RunGeoReg(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                                  cpstates, msmtinds, gradAtMsmts)

        # write output images and fields for this subject
        # TODO: BEWARE There are hardcoded numbers inside preprocessing code specific for ADNI/OASIS brain data.
        GeoRegWriteOuput(nodeSubjectsIds[i], cf, p, t, Imsmts, cpinds,
                         cpstates, msmtinds, gradAtMsmts, EnergyHistory)

        # clean up memory specific to this subject
        del t, Imsmts, cpinds, cpstates, msmtinds, gradAtMsmts