Example #1
0
    def setScale(scale):
        global curGrid

        scaleManager.set(scale)
        curGrid = scaleManager.getCurGrid()
        # since this is only 2D:
        curGrid.spacing().z = 1.0

        resampler.setScaleLevel(scaleManager)

        diffOp.setAlpha(fluidParams[0])
        diffOp.setBeta(fluidParams[1])
        diffOp.setGamma(fluidParams[2])
        diffOp.setGrid(curGrid)

        # downsample images
        I0.setGrid(curGrid)
        I1.setGrid(curGrid)
        if scaleManager.isLastScale():
            ca.Copy(I0, I0Orig)
            ca.Copy(I1, I1Orig)
        else:
            resampler.downsampleImage(I0, I0Orig)
            resampler.downsampleImage(I1, I1Orig)

        if Mask != None:
            if scaleManager.isLastScale():
                Mask.setGrid(curGrid)
                ca.Copy(Mask, MaskOrig)
            else:
                resampler.downsampleImage(Mask, MaskOrig)

        # initialize / upsample deformation
        if scaleManager.isFirstScale():
            u.setGrid(curGrid)
            ca.SetMem(u, 0.0)
        else:
            resampler.updateVField(u)

        # set grids
        gI.setGrid(curGrid)
        Idef.setGrid(curGrid)
        diff.setGrid(curGrid)
        gU.setGrid(curGrid)
        scratchI.setGrid(curGrid)
        scratchV.setGrid(curGrid)
    def SetScale(scale):
        '''Scale Management for Multiscale'''
        scaleManager.set(scale)
        resampler.setScaleLevel(scaleManager)
        curGrid = scaleManager.getCurGrid()
        curGrid.spacing().z = 1  # Because only 2D

        print 'Inside setScale(). Current grid is ', curGrid

        if scaleManager.isLastScale():
            print 'Inside setScale(): **Last Scale**'
        if scaleManager.isFirstScale():
            print 'Inside setScale(): **First Scale**'

        scratchISrc.setGrid(curGrid)
        scratchITar.setGrid(curGrid)
        scratchI.setGrid(curGrid)
        compF.setGrid(curGrid)
        idConf.study.I0 = ca.Image3D(curGrid, memT)
        idConf.study.I1 = ca.Image3D(curGrid, memT)

        if scaleManager.isLastScale():
            s = config.sigBlur[scaleList.index(sc)]
            r = config.kerBlur[scaleList.index(sc)]
            gausFilt.updateParams(I_tar.size(), ca.Vec3Df(r, r, r),
                                  ca.Vec3Di(s, s, s))
            gausFilt.filter(scratchITar, I_tar, temp)
            gausFilt.filter(scratchI, I_src, temp)

# ca.Copy(scratchI, I_src)
# ca.Copy(scratchITar, I_tar)

        else:
            s = config.sigBlur[scaleList.index(sc)]
            r = config.kerBlur[scaleList.index(sc)]
            gausFilt.updateParams(I_tar.size(), ca.Vec3Df(r, r, r),
                                  ca.Vec3Di(s, s, s))
            gausFilt.filter(I_tar_blur, I_tar, temp)
            gausFilt.filter(I_src_blur, I_src, temp)
            resampler.downsampleImage(scratchI, I_src_blur)
            resampler.downsampleImage(scratchITar, I_tar_blur)

        if scaleManager.isFirstScale():
            scratchF.setGrid(curGrid)
            scratchITar.setGrid(curGrid)
            ca.SetToIdentity(scratchF)
            ca.ApplyH(scratchISrc, scratchI, scratchF)

        else:
            compF.setGrid(scratchF.grid())
            ca.ComposeHH(compF, scratchF, h)
            resampler.updateHField(scratchF)
            resampler.updateHField(compF)
            ca.Copy(scratchF, compF)
            ca.ApplyH(scratchISrc, scratchI, compF)
Example #3
0
def ComposeDef(V,
               t,
               asVField=False,
               inverse=False,
               scratchV1=None,
               scratchV2=None):
    """
    Takes an array of Field3Ds and returns a Field3Ds
    containting the vectors Composed to non-integer time t
    """
    vlen = len(V)
    grid = V[0].grid()
    mType = V[0].memType()
    # just clamp to final time
    if t > vlen:
        t = vlen
    t_int = int(math.floor(t))
    t_frac = t - t_int
    h = core.Field3D(grid, mType)
    if scratchV1 is None:
        scratchV1 = core.Field3D(grid, mType)
    core.SetToIdentity(h)
    for s in range(t_int):
        if inverse:
            core.ComposeHVInv(scratchV1, h, V[s])
        else:
            core.ComposeVH(scratchV1, V[s], h)
        h.swap(scratchV1)
    if t_frac != 0.0:
        if scratchV2 is None:
            scratchV2 = core.Field3D(grid, mType)
        core.Copy(scratchV2, V[t_int])
        core.MulC_I(scratchV2, core.Vec3Df(t_frac, t_frac, t_frac))
        if inverse:
            core.ComposeHVInv(scratchV1, h, scratchV2)
        else:
            core.ComposeVH(scratchV1, scratchV2, h)
        core.Copy(h, scratchV1)
    if asVField:
        core.SetToIdentity(scratchV1)
        core.Sub_I(h, scratchV1)
    return h
Example #4
0
def DispImage(im, title=None,
              sliceIdx=None, dim='z',
              cmap='gray', newFig=True,
              rng=None, t=False, log=False):

    # if this volume is not a slice already, extract a slice
    sz = im.size().tolist()
    if sz[common.DIMMAP[dim]] > 1:
        im = common.ExtractSliceIm(im, sliceIdx, dim)
        im.toType(core.MEM_HOST)

    # transfer to host memory if necessary
    if im.memType() == core.MEM_DEVICE:
        tmp = core.Image3D(im.grid(), core.MEM_HOST)
        core.Copy(tmp, im)
        im = tmp
        
    # create the figure if requested
    if newFig:
        if title is None:
            plt.figure()
        else:
            plt.figure(title)
        plt.clf()
            
    # set the range
    if rng is None:
        vmin = None
        vmax = None
    else:
        vmin = rng[0]
        vmax = rng[1]

    if log:
        norm = matplotlib.colors.LogNorm(vmin=vmin, vmax=vmax)
    else:
        norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)

    # convert to numpy array
    arr = np.squeeze(im.asnp().copy())

    # transpose if requested
    if t:
        arr = arr.T

    # display
    plt.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax, norm=norm, interpolation='nearest')
    plt.axis('tight')
    plt.axis('image')
    if title is not None:
        plt.title(title)
    plt.xticks([])
    plt.yticks([])
    plt.draw()
Example #5
0
def Reduce(A, hA, op=None):
    """Reduce PyCA Image3D or Field3D over MPI

    A can live anywhere but hA needs to be of mType MEM_HOST

    """
    if not hasMPI:
      raise Exception("mpi4py required for Reduce operations: not found")

    if op is None:
      op = MPI.SUM

    if A.memType() == ca.MEM_HOST:
        # can do this in place without using hA
        if isinstance(A, ca.Image3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.asnp(), op=op)
        elif isinstance(A, ca.Field3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.x_asnp(), op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.y_asnp(), op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.z_asnp(), op=op)
        else:
            raise Exception('Can only reduce Image3D and Field3D')
    else:
        # will need some uploading and downloading
        assert(hA.memType() == ca.MEM_HOST)  # make sure we can actually use hA
        ca.Copy(hA, A)  # download

        if isinstance(A, ca.Image3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.asnp(), op=op)
        elif isinstance(A, ca.Field3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.x_asnp(), op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.y_asnp(), op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.z_asnp(), op=op)
        else:
            raise Exception('Can only reduce Image3D and Field3D')

        ca.Copy(A, hA)  # upload
def Reduce(A, hA, op=MPI.SUM):
    """Reduce PyCA Image3D or Field3D over MPI
    A can live anywhere but hA needs to be of mType MEM_HOST
    """
    if A.memType() == ca.MEM_HOST:
        # can do this in place without using hA
        if isinstance(A, ca.Field3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.asnp()[0], op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.asnp()[1], op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.asnp()[2], op=op)
        else:
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, A.asnp(), op=op)
    else:
        # will need some uploading and downloading
        assert (hA.memType() == ca.MEM_HOST
                )  # make sure we can actually use hA
        ca.Copy(hA, A)  # download
        if isinstance(A, ca.Field3D):
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.asnp()[0], op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.asnp()[1], op=op)
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.asnp()[2], op=op)
        else:
            MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE, hA.asnp(), op=op)
        ca.Copy(A, hA)  # upload
def MatchingImageMomentaComputeEnergy(geodesicState, m0, J1, n1):
    vecEnergy = 0.0
    imageMatchEnergy = 0.0
    momentaMatchEnergy = 0.0

    grid = geodesicState.J0.grid()
    mType = geodesicState.J0.memType()

    imdiff = ca.ManagedImage3D(grid, mType)
    vecdiff = ca.ManagedField3D(grid, mType)

    # image match energy
    ca.ApplyH(imdiff, geodesicState.J0, geodesicState.rhoinv)
    ca.Sub_I(imdiff, J1)
    imageMatchEnergy = 0.5 * ca.Sum2(imdiff) / (
        float(geodesicState.p0.nVox()) * geodesicState.Sigma *
        geodesicState.Sigma * geodesicState.SigmaIntercept *
        geodesicState.SigmaIntercept)  # save for use in intercept energy term

    # momenta match energy
    ca.CoAd(geodesicState.p, geodesicState.rhoinv, m0)
    ca.Sub_I(geodesicState.p, n1)
    ca.Copy(vecdiff, geodesicState.p)  # save for use in slope energy term
    geodesicState.diffOp.applyInverseOperator(geodesicState.p)
    momentaMatchEnergy = ca.Dot(vecdiff, geodesicState.p) / (
        float(geodesicState.p0.nVox()) * geodesicState.SigmaSlope *
        geodesicState.SigmaSlope)

    # vector energy. p is used as scratch variable
    ca.Copy(geodesicState.p, geodesicState.p0)
    geodesicState.diffOp.applyInverseOperator(geodesicState.p)
    vecEnergy = 0.5 * ca.Dot(geodesicState.p0, geodesicState.p) / (
        float(geodesicState.p0.nVox()) * geodesicState.SigmaIntercept *
        geodesicState.SigmaIntercept)

    return (vecEnergy, imageMatchEnergy, momentaMatchEnergy)
Example #8
0
def MatchingGradient(p):
    # shoot the geodesic forward    
    CAvmCommon.IntegrateGeodesic(p.m0,p.t,p.diffOp, \
                      p.m, p.g, p.ginv,\
                      p.scratchV1, p.scratchV2,p. scratchV3,\
                      p.checkpointstates, p.checkpointinds,\
                      Ninv=p.nInv, integMethod = p.integMethod, RK4=p.scratchV4,scratchG=p.scratchV5)


    endidx = p.checkpointinds.index(len(p.t)-1)
    # compute residual image
    ca.ApplyH(p.residualIm,p.I0,p.ginv)
    ca.Sub_I(p.residualIm, p.I1)
    # while we have residual, save the image energy
    IEnergy = ca.Sum2(p.residualIm)/(2*p.sigma*p.sigma*float(p.I0.nVox()))
    
    ca.DivC_I(p.residualIm, p.sigma*p.sigma) # gradient at measurement
    
    # integrate backward
    CAvmCommon.IntegrateAdjoints(p.Iadj,p.madj,\
                      p.I,p.m,p.Iadjtmp, p.madjtmp,p.scratchV1,\
                      p.scratchV2,p.scratchV3,\
                      p.I0,p.m0,\
                      p.t, p.checkpointstates, p.checkpointinds,\
                      [p.residualIm], [endidx],\
                      p.diffOp,
                      p.integMethod, p.nInv, \
                      scratchV3=p.scratchV7, scratchV4=p.g,scratchV5=p.ginv,scratchV6=p.scratchV8, scratchV7=p.scratchV9, \
                      scratchV8=p.scratchV10,scratchV9=p.scratchV11,\
                      RK4=p.scratchV4, scratchG=p.scratchV5, scratchGinv=p.scratchV6)
                      
    
    # compute gradient
    ca.Copy(p.scratchV1, p.m0)
    p.diffOp.applyInverseOperator(p.scratchV1)
    # while we have velocity, save the vector energy
    VEnergy = 0.5*ca.Dot(p.m0,p.scratchV1)/float(p.I0.nVox())

    ca.Sub_I(p.scratchV1, p.madj)
    #p.diffOp.applyOperator(p.scratchV1)
    return (p.scratchV1, VEnergy, IEnergy)
Example #9
0
def JacDetPlot(vf, title='Jac. Det.',
               jd_max=10.0, cmap='PRGn',
               nonpos_clr=(1.0, 0.0, 0.0, 1.0),
               sliceIdx=None, dim='z',
               isVF=True,
               newFig=False):
    """
    Plot the jacobian determinant using logmapped colors, and setting
    zero or negative values to 'nonpos_clr'.  jd_max is the maximum
    value to display without clamping, and also defines the min value
    as 1.0/jd_max to assure 1.0 is centered in the colormap.  If vf is
    a vector field, compute the jacobian determinant.  If it is an
    Image3D, assume it is the jacobian determinant to be plotted.
    """

    if common.IsField3D(vf):
        grid = vf.grid()
        mType = vf.memType()
        h = core.ManagedField3D(grid, mType)
        jacdet = core.ManagedImage3D(grid, mType)
        core.Copy(h, vf)
        if isVF:
            core.VtoH_I(h)
        core.JacDetH(jacdet, h)
    elif common.IsImage3D(vf):
        jacdet = vf
    else:
        raise Exception('unknown input type to JacDetPlot, %s'%\
                        str(type(vf)))
    jd_cmap = JacDetCMap(jd_max=jd_max, cmap=cmap,
                               nonpos_clr=nonpos_clr)
    DispImage(jacdet, title=title,
              sliceIdx=sliceIdx, dim=dim,
              rng=[1.0/jd_max, jd_max],
              cmap=jd_cmap,
              log=True,
              newFig=newFig)
def MatchingImageMomentaWriteOuput(cf, geodesicState, EnergyHistory, m0, n1):
    grid = geodesicState.J0.grid()
    mType = geodesicState.J0.memType()

    # save momenta for the gedoesic
    common.SaveITKField(geodesicState.p0, cf.io.outputPrefix + "p0.mhd")

    # save matched momenta for the geodesic
    if cf.vectormomentum.matchImOnly:
        m0 = common.LoadITKField(cf.study.m, mType)

    ca.CoAd(geodesicState.p, geodesicState.rhoinv, m0)
    common.SaveITKField(geodesicState.p, cf.io.outputPrefix + "m1.mhd")

    # momenta match energy
    if cf.vectormomentum.matchImOnly:
        vecdiff = ca.ManagedField3D(grid, mType)
        ca.Sub_I(geodesicState.p, n1)
        ca.Copy(vecdiff, geodesicState.p)
        geodesicState.diffOp.applyInverseOperator(geodesicState.p)
        momentaMatchEnergy = ca.Dot(vecdiff, geodesicState.p) / (
            float(geodesicState.p0.nVox()) * geodesicState.SigmaSlope *
            geodesicState.SigmaSlope)
        # save energy
        energyFilename = cf.io.outputPrefix + "testMomentaMatchEnergy.csv"
        with open(energyFilename, 'w') as f:
            print >> f, momentaMatchEnergy

    # save matched image for the geodesic
    tempim = ca.ManagedImage3D(grid, mType)
    ca.ApplyH(tempim, geodesicState.J0, geodesicState.rhoinv)
    common.SaveITKImage(tempim, cf.io.outputPrefix + "I1.mhd")

    # save energy
    energyFilename = cf.io.outputPrefix + "energy.csv"
    MatchingImageMomentaWriteEnergyHistoryToFile(EnergyHistory, energyFilename)
Example #11
0
def RigidReg(
    Is,
    It,
    theta_step=.0001,
    t_step=.01,
    a_step=0,
    maxIter=350,
    plot=True,
    origin=None,
    theta=0,  # only applies for 2D
    t=None,  # only applies for 2D
    Ain=np.matrix(np.identity(3))):

    Idef = ca.Image3D(It.grid(), It.memType())
    gradIdef = ca.Field3D(It.grid(), It.memType())
    h = ca.Field3D(It.grid(), It.memType())
    ca.SetToIdentity(h)
    x = ca.Image3D(It.grid(), It.memType())
    y = ca.Image3D(It.grid(), It.memType())
    DX = ca.Image3D(It.grid(), It.memType())
    DY = ca.Image3D(It.grid(), It.memType())
    diff = ca.Image3D(It.grid(), It.memType())
    scratchI = ca.Image3D(It.grid(), It.memType())

    ca.Copy(x, h, 0)
    ca.Copy(y, h, 1)
    if origin is None:
        origin = [(Is.grid().size().x + 1) / 2.0,
                  (Is.grid().size().y + 1) / 2.0,
                  (Is.grid().size().z + 1) / 2.0]
    x -= origin[0]
    y -= origin[1]

    numel = It.size().x * It.size().y * It.size().z
    immin, immax = ca.MinMax(It)
    imrng = max(immax - immin, .01)
    t_step /= numel * imrng
    theta_step /= numel * imrng
    a_step /= numel * imrng
    energy = []
    a = 1

    if cc.Is3D(Is):
        if theta:
            print "theta is not utilized in 3D registration"
        z = ca.Image3D(It.grid(), It.memType())
        DZ = ca.Image3D(It.grid(), It.memType())
        ca.Copy(z, h, 2)
        z -= origin[2]

        A = np.matrix(np.identity(4))
        cc.ApplyAffineReal(Idef, Is, A)
        #        cc.ApplyAffine(Idef, Is, A, origin)

        t = [0, 0, 0]
        for i in xrange(maxIter):
            ca.Sub(diff, Idef, It)
            ca.Gradient(gradIdef, Idef)
            ca.Copy(DX, gradIdef, 0)
            ca.Copy(DY, gradIdef, 1)
            ca.Copy(DZ, gradIdef, 2)

            # take gradient step for the translation
            ca.Mul(scratchI, DX, diff)
            t[0] += t_step * ca.Sum(scratchI)
            ca.Mul(scratchI, DY, diff)
            t[1] += t_step * ca.Sum(scratchI)
            ca.Mul(scratchI, DZ, diff)
            t[2] += t_step * ca.Sum(scratchI)

            A[0, 3] = t[0]
            A[1, 3] = t[1]
            A[2, 3] = t[2]
            if a_step > 0:
                DX *= x
                DY *= y
                DZ *= z
                DZ += DX
                DZ += DY
                DZ *= diff
                d_a = a_step * ca.Sum(DZ)
                a_prev = a
                a += d_a
                # multiplying by a/a_prev is equivalent to adding (a-aprev)
                A = A * np.matrix([[a / a_prev, 0, 0, 0], [
                    0, a / a_prev, 0, 0
                ], [0, 0, a / a_prev, 0], [0, 0, 0, 1]])

            # Z rotation
            ca.Copy(DX, gradIdef, 0)
            ca.Copy(DY, gradIdef, 1)
            DX *= y
            ca.Neg_I(DX)
            DY *= x
            ca.Add(scratchI, DX, DY)
            scratchI *= diff
            theta = -theta_step * ca.Sum(scratchI)
            # % Recalculate A
            A = A * np.matrix(
                [[np.cos(theta), np.sin(theta), 0, 0],
                 [-np.sin(theta), np.cos(theta), 0, 0], [0, 0, 1, 0],
                 [0, 0, 0, 1]])

            # Y rotation
            ca.Copy(DX, gradIdef, 0)
            ca.Copy(DZ, gradIdef, 2)
            DX *= z
            ca.Neg_I(DX)
            DZ *= x
            ca.Add(scratchI, DX, DZ)
            scratchI *= diff
            theta = -theta_step * ca.Sum(scratchI)
            # % Recalculate A
            A = A * np.matrix(
                [[np.cos(theta), 0, np.sin(theta), 0], [0, 1, 0, 0],
                 [-np.sin(theta), 0, np.cos(theta), 0], [0, 0, 0, 1]])

            # X rotation
            ca.Copy(DY, gradIdef, 1)
            ca.Copy(DZ, gradIdef, 2)
            DY *= z
            ca.Neg_I(DY)
            DZ *= y
            ca.Add(scratchI, DY, DZ)
            scratchI *= diff
            theta = -theta_step * ca.Sum(scratchI)
            # Recalculate A
            A = A * np.matrix(
                [[1, 0, 0, 0], [0, np.cos(theta),
                                np.sin(theta), 0],
                 [0, -np.sin(theta), np.cos(theta), 0], [0, 0, 0, 1]])

            cc.ApplyAffineReal(Idef, Is, A)
            #        cc.ApplyAffine(Idef, Is, A, origin)

            # % display Energy (and other figures) at the end
            energy.append(ca.Sum2(diff))
            if (i == maxIter -
                    1) or (i > 75 and abs(energy[-1] - energy[-50]) < immax):
                cd.DispImage(diff, title='Difference Image', colorbar=True)
                plt.figure()
                plt.plot(energy)
                cd.DispImage(Idef, title='Deformed Image')
                break

    elif cc.Is2D(Is):
        # theta = 0
        if t is None:
            t = [0, 0]

        # A = np.array([[a*np.cos(theta), np.sin(theta), t[0]],
        #               [-np.sin(theta), a*np.cos(theta), t[1]],
        #               [0, 0, 1]])

        A = np.copy(Ain)
        cc.ApplyAffineReal(Idef, Is, A)
        # ca.Copy(Idef, Is)
        for i in xrange(1, maxIter):
            # [FX,FY] = gradient(Idef)
            ca.Sub(diff, Idef, It)
            ca.Gradient(gradIdef, Idef)
            ca.Copy(DX, gradIdef, 0)
            ca.Copy(DY, gradIdef, 1)

            # take gradient step for the translation
            ca.Mul(scratchI, DX, diff)
            t[0] += t_step * ca.Sum(scratchI)
            ca.Mul(scratchI, DY, diff)
            t[1] += t_step * ca.Sum(scratchI)

            # take gradient step for the rotation theta
            if a_step > 0:
                # d/da
                DX *= x
                DY *= y
                DY += DX
                DY *= diff
                d_a = a_step * ca.Sum(DY)
                a += d_a
            # d/dtheta
            ca.Copy(DX, gradIdef, 0)
            ca.Copy(DY, gradIdef, 1)
            DX *= y
            ca.Neg_I(DX)
            DY *= x
            ca.Add(scratchI, DX, DY)
            scratchI *= diff
            d_theta = theta_step * ca.Sum(scratchI)
            theta -= d_theta

            # Recalculate A, Idef
            A = np.matrix([[a * np.cos(theta),
                            np.sin(theta), t[0]],
                           [-np.sin(theta), a * np.cos(theta), t[1]],
                           [0, 0, 1]])
            A = Ain * A

            cc.ApplyAffineReal(Idef, Is, A)
            #        cc.ApplyAffine(Idef, Is, A, origin)

            # % display Energy (and other figures) at the end
            energy.append(ca.Sum2(diff))
            if (i == maxIter -
                    1) or (i > 75 and abs(energy[-1] - energy[-50]) < immax):
                if i == maxIter - 1:
                    print "not converged in ", maxIter, " Iterations"
                if plot:
                    cd.DispImage(diff, title='Difference Image', colorbar=True)
                    plt.figure()
                    plt.plot(energy)
                    cd.DispImage(Idef, title='Deformed Image')
                break
    return A
def Fragmenter():
    tmpOb = Config.Load(
        frgSpec,
        pth.expanduser(
            '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/section_{1}_frag0.yaml'
            .format(secOb.mkyNum, secOb.secNum)))
    dictBuild = {}
    #Load in the whole image so that the fragment can cropped out
    ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(tmpOb, ca.MEM_HOST)

    #Because some of the functions only woth with gray images
    bfiGry = ca.Image3D(bfiSrc.grid(), bfiSrc.memType())
    ca.Copy(bfiGry, bfiSrc, 1)

    lblSsi, _ = ndimage.label(np.squeeze(ssiMsk.asnp()) > 0)
    lblBfi, _ = ndimage.label(np.squeeze(bfiMsk.asnp()) > 0)

    seedPt = np.squeeze(pp.LandmarkPicker([lblBfi, lblSsi]))
    subMskBfi = common.ImFromNPArr(lblBfi == lblBfi[seedPt[0, 0],
                                                    seedPt[0,
                                                           1]].astype('int8'),
                                   sp=bfiSrc.spacing(),
                                   orig=bfiSrc.origin())
    subMskSsi = common.ImFromNPArr(lblSsi == lblSsi[seedPt[1, 0],
                                                    seedPt[1,
                                                           1]].astype('int8'),
                                   sp=ssiSrc.spacing(),
                                   orig=ssiSrc.origin())

    bfiGry *= subMskBfi
    bfiSrc *= subMskBfi
    ssiSrc *= subMskSsi
    #Pick points that are the bounding box of the desired subvolume
    corners = np.array(
        pp.LandmarkPicker(
            [np.squeeze(bfiGry.asnp()),
             np.squeeze(ssiSrc.asnp())]))
    bfiCds = corners[:, 0]
    ssiCds = corners[:, 1]

    #Extract the region from the source images
    bfiRgn = cc.SubVol(bfiSrc,
                       xrng=[bfiCds[0, 0], bfiCds[1, 0]],
                       yrng=[bfiCds[0, 1], bfiCds[1, 1]])
    ssiRgn = cc.SubVol(ssiSrc,
                       xrng=[ssiCds[0, 0], ssiCds[1, 0]],
                       yrng=[ssiCds[0, 1], ssiCds[1, 1]])

    #Extract the region from the mask images
    rgnMskSsi = cc.SubVol(subMskSsi,
                          xrng=[ssiCds[0, 0], ssiCds[1, 0]],
                          yrng=[ssiCds[0, 1], ssiCds[1, 1]])
    rgnMskBfi = cc.SubVol(subMskBfi,
                          xrng=[bfiCds[0, 0], bfiCds[1, 0]],
                          yrng=[bfiCds[0, 1], bfiCds[1, 1]])

    dictBuild['rgnBfi'] = np.divide(
        bfiCds, np.array(bfiSrc.size().tolist()[0:2], 'float')).tolist()
    dictBuild['rgnSsi'] = np.divide(
        ssiCds, np.array(ssiSrc.size().tolist()[0:2], 'float')).tolist()

    #Check the output directory for the source files of the fragment
    if not pth.exists(
            pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum)))
    #Check the output directory for the mask files of the fragment
    if not pth.exists(
            pth.expanduser(secOb.ssiMskPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiMskPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiMskPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiMskPath + 'frag{0}'.format(frgNum)))

    dictBuild[
        'ssiSrcName'] = 'frag{0}/M{1}_01_ssi_section_{2}_frag1.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'bfiSrcName'] = 'frag{0}/M{1}_01_bfi_section_{2}_frag1.mha'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'ssiMskName'] = 'frag{0}/M{1}_01_ssi_section_{2}_frag1_mask.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)
    dictBuild[
        'bfiMskName'] = 'frag{0}/M{1}_01_bfi_section_{2}_frag1_mask.tif'.format(
            frgNum, secOb.mkyNum, secOb.secNum)

    #Write out the masked and cropped images so that they can be loaded from the YAML file
    #The BFI region needs to be saved as color and mha format so that the grid information is carried over.
    common.SaveITKImage(
        ssiRgn, pth.expanduser(secOb.ssiSrcPath + dictBuild['ssiSrcName']))
    cc.WriteColorMHA(
        bfiRgn, pth.expanduser(secOb.bfiSrcPath + dictBuild['bfiSrcName']))
    common.SaveITKImage(
        rgnMskSsi, pth.expanduser(secOb.ssiMskPath + dictBuild['ssiMskName']))
    common.SaveITKImage(
        rgnMskBfi, pth.expanduser(secOb.bfiMskPath + dictBuild['bfiMskName']))

    frgOb = Config.MkConfig(dictBuild, frgSpec)
    updateFragOb(frgOb)

    return None
Example #13
0
        if SaveBW:
            cc.InsertSlice(BFIDef3D_BW, BFI_def_BW, sliceIdx)
        continue

    # Run IDiff on VE B/W Images
    MRI = common.ExtractSliceIm(MRI3D, sliceIdx)
    # Make Memory all fast
    MRI.toType(ca.MEM_DEVICE)
    BFI.toType(ca.MEM_DEVICE)
    # Standardize Grids
    MRI.setGrid(grid2D)
    BFI.setGrid(grid2D)
    MRI /= ca.Max(MRI)
    BFI_VE = ca.Image3D(grid2D, BFI.memType())
    MRI_VE = ca.Image3D(grid2D, MRI.memType())
    ca.Copy(MRI_VE, MRI)
    ca.Copy(BFI_VE, BFI)

    cc.SetRegionLTE(MRI_VE, MRI, 0.13, 1)
    MRI_VE *= -1

    square = ca.Image3D(grid2D, BFI.memType())
    cc.CreateRect(square, [0, 0], [440, 440])
    BFI_VE *= square

    cc.VarianceEqualize_I(BFI_VE, sigma=5.0)
    cc.VarianceEqualize_I(MRI_VE, sigma=5.0)

    grid_orig = BFI_VE.grid().copy()
    grid_new = cc.MakeGrid(grid_orig.size(), [1, 1, 1], 'center')
    BFI_VE.setGrid(grid_new)
Example #14
0
def ApplyAffine(Iout, Im, A, bg=ca.BACKGROUND_STRATEGY_PARTIAL_ZERO):
    '''Applies an Affine matrix A to an image Im using the Image3D
    grid (size, spacing, origin) of the two images (Input and Output)

    '''
    # algorithm outline:  Create a temporary large grid, then perform
    # real affine transforms here, then crop to be the size of the out grid
    ca.SetMem(Iout, 0.0)

    A = np.matrix(A)

    bigsize = [max(Iout.grid().size().x, Im.grid().size().x),
               max(Iout.grid().size().y, Im.grid().size().y),
               max(Iout.grid().size().z, Im.grid().size().z)]
    idgrid = ca.GridInfo(ca.Vec3Di(bigsize[0], bigsize[1], bigsize[2]),
                         ca.Vec3Df(1, 1, 1),
                         ca.Vec3Df(0, 0, 0))
    # newgrid = Iout.grid()       # not a true copy!!!!!
    newgrid = ca.GridInfo(Iout.grid().size(),
                          Iout.grid().spacing(),
                          Iout.grid().origin())

    mType = Iout.memType()
    Imbig = cc.PadImage(Im, bigsize)
    h = ca.Field3D(idgrid, mType)
    ca.SetToIdentity(h)
    if isinstance(Im, ca.Field3D):
        Ioutbig = ca.Field3D(idgrid, mType)
    else:
        Ioutbig = ca.Image3D(idgrid, mType)

    # note:  x_real' = A*x_real; x_real' given (input grid)
    # solution: x_real = A^-1 * x_real
    # where x_real = x_index*spacing + origin
    # and x_real' = x_index'*spacing' + origin'
    # x_index' is really given, as is both spacings/origins
    # and we plug in the solution for x_index' into applyH

    if A.shape[1] == 3:          # 2D affine matrix
        x = ca.Image3D(idgrid, mType)
        y = ca.Image3D(idgrid, mType)
        xnew = ca.Image3D(idgrid, mType)
        ynew = ca.Image3D(idgrid, mType)
        ca.Copy(x, h, 0)
        ca.Copy(y, h, 1)

        # convert x,y to world coordinates
        x *= Iout.grid().spacing().x
        y *= Iout.grid().spacing().y
        x += Iout.grid().origin().x
        y += Iout.grid().origin().y

        # Matrix Multiply (All in real coords)
        Ainv = A.I
        ca.MulC_Add_MulC(xnew, x, Ainv[0, 0], y, Ainv[0, 1])
        ca.MulC_Add_MulC(ynew, x, Ainv[1, 0], y, Ainv[1, 1])
        xnew += (Ainv[0, 2])
        ynew += (Ainv[1, 2])     # xnew and ynew are now in real coords

        # convert back to index coordinates
        xnew -= Im.grid().origin().x
        ynew -= Im.grid().origin().y
        xnew /= Im.grid().spacing().x
        ynew /= Im.grid().spacing().y

        ca.SetToZero(h)
        ca.Copy(h, xnew, 0)
        ca.Copy(h, ynew, 1)

    elif A.shape[1] == 4:         # 3D affine matrix
        x = ca.Image3D(idgrid, mType)
        y = ca.Image3D(idgrid, mType)
        z = ca.Image3D(idgrid, mType)
        xnew = ca.Image3D(idgrid, mType)
        ynew = ca.Image3D(idgrid, mType)
        znew = ca.Image3D(idgrid, mType)
        ca.Copy(x, h, 0)
        ca.Copy(y, h, 1)
        ca.Copy(z, h, 2)

        x *= Iout.grid().spacing().x
        y *= Iout.grid().spacing().y
        z *= Iout.grid().spacing().z
        x += Iout.grid().origin().x
        y += Iout.grid().origin().y
        z += Iout.grid().origin().z

        # Matrix Multiply (All in real coords)
        Ainv = A.I
        ca.MulC_Add_MulC(xnew, x, Ainv[0, 0], y, Ainv[0, 1])
        ca.Add_MulC_I(xnew, z, Ainv[0, 2])
        xnew += (Ainv[0, 3])
        ca.MulC_Add_MulC(ynew, x, Ainv[1, 0], y, Ainv[1, 1])
        ca.Add_MulC_I(ynew, z, Ainv[1, 2])
        ynew += (Ainv[1, 3])
        ca.MulC_Add_MulC(znew, x, Ainv[2, 0], y, Ainv[2, 1])
        ca.Add_MulC_I(znew, z, Ainv[2, 2])
        znew += (Ainv[2, 3])

        # convert to index coordinates
        xnew -= Im.grid().origin().x
        ynew -= Im.grid().origin().y
        znew -= Im.grid().origin().z
        xnew /= Im.grid().spacing().x
        ynew /= Im.grid().spacing().y
        znew /= Im.grid().spacing().z

        ca.Copy(h, xnew, 0)
        ca.Copy(h, ynew, 1)
        ca.Copy(h, znew, 2)

    Imbig.setGrid(idgrid)

    ca.ApplyH(Ioutbig, Imbig, h, bg)
    # crop Ioutbig -> Iout
    ca.SubVol(Iout, Ioutbig, ca.Vec3Di(0, 0, 0))
    Iout.setGrid(newgrid)   # change back
def main():
    # Extract the Monkey number and section number from the command line
    global frgNum
    global secOb

    mkyNum = sys.argv[1]
    secNum = sys.argv[2]
    frgNum = int(sys.argv[3])
    write = True

    # if not os.path.exists(os.path.expanduser('~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'.format(mkyNum,secNum))):
    #     cf = initial(secNum, mkyNum)

    try:
        secOb = Config.Load(
            secSpec,
            pth.expanduser(
                '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                .format(mkyNum, secNum)))
    except IOError as e:
        try:
            temp = Config.LoadYAMLDict(pth.expanduser(
                '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                .format(mkyNum, secNum)),
                                       include=False)
            secOb = Config.MkConfig(temp, secSpec)
        except IOError:
            print 'It appears there is no configuration file for this section. Please initialize one and restart.'
            sys.exit()
        if frgNum == int(secOb.yamlList[frgNum][-6]):
            Fragmenter()
            try:
                secOb = Config.Load(
                    secSpec,
                    pth.expanduser(
                        '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'
                        .format(mkyNum, secNum)))
            except IOError:
                print 'It appeas that the include yaml file list does not match your fragmentation number. Please check them and restart.'
                sys.exit()

    if not pth.exists(
            pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))):
        common.Mkdir_p(
            pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))):
        common.Mkdir_p(
            pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum)))
    if not pth.exists(
            pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))):
        os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum)))

    frgOb = Config.MkConfig(secOb.yamlList[frgNum], frgSpec)
    ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(frgOb, ca.MEM_HOST)

    #Extract the saturation Image from the color iamge
    bfiHsv = common.FieldFromNPArr(
        matplotlib.colors.rgb_to_hsv(
            np.rollaxis(np.array(np.squeeze(bfiSrc.asnp())), 0, 3)),
        ca.MEM_HOST)
    bfiHsv.setGrid(bfiSrc.grid())
    bfiSat = ca.Image3D(bfiSrc.grid(), bfiHsv.memType())
    ca.Copy(bfiSat, bfiHsv, 1)
    #Histogram equalize, normalize and mask the blockface saturation image
    bfiSat = cb.HistogramEqualize(bfiSat, 256)
    bfiSat.setGrid(bfiSrc.grid())
    bfiSat *= -1
    bfiSat -= ca.Min(bfiSat)
    bfiSat /= ca.Max(bfiSat)
    bfiSat *= bfiMsk
    bfiSat.setGrid(bfiSrc.grid())

    #Write out the blockface region after adjusting the colors with a format that supports header information
    if write:
        common.SaveITKImage(
            bfiSat,
            pth.expanduser(secOb.bfiSrcPath +
                           'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_sat.nrrd'.
                           format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Set the sidescape grid relative to that of the blockface
    ssiSrc.setGrid(ConvertGrid(ssiSrc.grid(), bfiSat.grid()))
    ssiMsk.setGrid(ConvertGrid(ssiMsk.grid(), bfiSat.grid()))
    ssiSrc *= ssiMsk

    #Write out the sidescape masked image in a format that stores the header information
    if write:
        common.SaveITKImage(
            ssiSrc,
            pth.expanduser(secOb.ssiSrcPath +
                           'frag{0}/M{1}_01_ssi_section_{2}_frag{0}.nrrd'.
                           format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Update the image parameters of the sidescape image for future use
    frgOb.imSize = ssiSrc.size().tolist()
    frgOb.imOrig = ssiSrc.origin().tolist()
    frgOb.imSpac = ssiSrc.spacing().tolist()
    updateFragOb(frgOb)

    #Find the affine transform between the two fragments
    bfiAff, ssiAff, aff = Affine(bfiSat, ssiSrc, frgOb)
    updateFragOb(frgOb)

    #Write out the affine transformed images in a format that stores header information
    if write:
        common.SaveITKImage(
            bfiAff,
            pth.expanduser(
                secOb.bfiOutPath +
                'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_aff_ssi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))
        common.SaveITKImage(
            ssiAff,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_aff_bfi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))

    bfiVe = bfiAff.copy()
    ssiVe = ssiSrc.copy()
    cc.VarianceEqualize_I(bfiVe, sigma=frgOb.sigVarBfi, eps=frgOb.epsVar)
    cc.VarianceEqualize_I(ssiVe, sigma=frgOb.sigVarSsi, eps=frgOb.epsVar)

    #As of right now, the largest pre-computed FFT table is 2048, so resample onto that grid for registration
    regGrd = ConvertGrid(
        cc.MakeGrid(ca.Vec3Di(2048, 2048, 1), ca.Vec3Df(1, 1, 1),
                    ca.Vec3Df(0, 0, 0)), ssiSrc.grid())
    ssiReg = ca.Image3D(regGrd, ca.MEM_HOST)
    bfiReg = ca.Image3D(regGrd, ca.MEM_HOST)
    cc.ResampleWorld(ssiReg, ssiVe)
    cc.ResampleWorld(bfiReg, bfiVe)

    #Create the default configuration object for IDiff Matching and then set some parameters
    idCf = Config.SpecToConfig(IDiff.Matching.MatchingConfigSpec)
    idCf.compute.useCUDA = True
    idCf.io.outputPrefix = '/home/sci/blakez/IDtest/'

    #Run the registration
    ssiDef, phi = DefReg(ssiReg, bfiReg, frgOb, ca.MEM_DEVICE, idCf)

    #Turn the deformation into a displacement field so it can be applied to the large tif with C++ code
    affV = phi.copy()
    cc.ApplyAffineReal(affV, phi, np.linalg.inv(frgOb.affine))
    ca.HtoV_I(affV)

    #Apply the found deformation to the input ssi
    ssiSrc.toType(ca.MEM_DEVICE)
    cc.HtoReal(phi)
    affPhi = phi.copy()
    ssiBfi = ssiSrc.copy()
    upPhi = ca.Field3D(ssiSrc.grid(), phi.memType())

    cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine))
    cc.ResampleWorld(upPhi, affPhi, bg=2)
    cc.ApplyHReal(ssiBfi, ssiSrc, upPhi)

    # ssiPhi = ca.Image3D(ssiSrc.grid(), phi.memType())
    # upPhi = ca.Field3D(ssiSrc.grid(), phi.memType())
    # cc.ResampleWorld(upPhi, phi, bg=2)
    # cc.ApplyHReal(ssiPhi, ssiSrc, upPhi)
    # ssiBfi = ssiSrc.copy()
    # cc.ApplyAffineReal(ssiBfi, ssiPhi, np.linalg.inv(frgOb.affine))

    # #Apply affine to the deformation
    # affPhi = phi.copy()
    # cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine))

    if write:
        common.SaveITKImage(
            ssiBfi,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_def_bfi.nrrd'.format(
                    frgNum, secOb.mkyNum, secOb.secNum)))
        cc.WriteMHA(
            affPhi,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_real.mha'.
                format(frgNum, secOb.mkyNum, secOb.secNum)))
        cc.WriteMHA(
            affV,
            pth.expanduser(
                secOb.ssiOutPath +
                'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_disp.mha'.
                format(frgNum, secOb.mkyNum, secOb.secNum)))

    #Create the list of names that the deformation should be applied to
    # nameList = ['M15_01_0956_SideLight_DimLED_10x_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c1_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c2_ORG.tif',
    #             'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c3_ORG.tif']

    # appLarge(nameList, affPhi)

    common.DebugHere()
Example #16
0
    for i in xrange(1, 5):
        fname = imagedir + 'block' + str(i) + fname_end
        try:
            blk = cc.LoadMHA(fname, mType)
        except IOError:
            print 'Warning... block ' + str(i) + ' does not exist'
            continue
        blocks += blk
        weight3 = blk.copy()
        try:
            weight = cc.LoadMHA(imagedir +
                                'block{0}_as_MRI_weight_{1}.mha'.format(i, sz))
        except IOError:
            print 'Warning, weight block does not exist'
            weight = ca.Image3D(blk.grid(), blk.memType())
            ca.Copy(weight, blk, 0)  # take red
            cc.SetRegionGTE(weight, weight, .1, 1)
        for i in xrange(3):
            ca.Copy(weight3, weight, i)
        weights += weight3
        print ca.MinMax(weights)

    for i in xrange(3):
        ca.Copy(weight, weights, i)
        cc.SetRegionLT(weight, weight, 1, 1)
        ca.Copy(weights, weight, i)
    print ca.MinMax(weights)

    ca.Div_I(blocks, weights)

else:  # best
def DefReg(I_src, I_tar, config, memT, idConf):

    I_src.toType(memT)
    I_tar.toType(memT)

    # Convert to 2D spacing (because it really matters)
    sp2D = I_src.spacing().tolist()
    sp2D = ca.Vec3Df(sp2D[0], sp2D[1], 1)

    I_tar.setSpacing(sp2D)
    I_src.setSpacing(sp2D)
    gridReg = I_tar.grid()

    # Blur the images
    I_tar_blur = I_tar.copy()
    I_src_blur = I_src.copy()
    temp = ca.Image3D(I_tar.grid(), memT)
    gausFilt = ca.GaussianFilterGPU()

    scaleList = config.scale

    # Initiate the scale manager
    scaleManager = ca.MultiscaleManager(gridReg)
    for s in scaleList:
        scaleManager.addScaleLevel(s)
    if memT == ca.MEM_HOST:
        resampler = ca.MultiscaleResamplerGaussCPU(gridReg)
    else:
        resampler = ca.MultiscaleResamplerGaussGPU(gridReg)

    # Generate the scratch images
    scratchITar = ca.Image3D(gridReg, memT)
    scratchISrc = ca.Image3D(gridReg, memT)
    scratchI = ca.Image3D(gridReg, memT)
    scratchF = ca.Field3D(gridReg, memT)
    compF = ca.Field3D(gridReg, memT)

    def SetScale(scale):
        '''Scale Management for Multiscale'''
        scaleManager.set(scale)
        resampler.setScaleLevel(scaleManager)
        curGrid = scaleManager.getCurGrid()
        curGrid.spacing().z = 1  # Because only 2D

        print 'Inside setScale(). Current grid is ', curGrid

        if scaleManager.isLastScale():
            print 'Inside setScale(): **Last Scale**'
        if scaleManager.isFirstScale():
            print 'Inside setScale(): **First Scale**'

        scratchISrc.setGrid(curGrid)
        scratchITar.setGrid(curGrid)
        scratchI.setGrid(curGrid)
        compF.setGrid(curGrid)
        idConf.study.I0 = ca.Image3D(curGrid, memT)
        idConf.study.I1 = ca.Image3D(curGrid, memT)

        if scaleManager.isLastScale():
            s = config.sigBlur[scaleList.index(sc)]
            r = config.kerBlur[scaleList.index(sc)]
            gausFilt.updateParams(I_tar.size(), ca.Vec3Df(r, r, r),
                                  ca.Vec3Di(s, s, s))
            gausFilt.filter(scratchITar, I_tar, temp)
            gausFilt.filter(scratchI, I_src, temp)

# ca.Copy(scratchI, I_src)
# ca.Copy(scratchITar, I_tar)

        else:
            s = config.sigBlur[scaleList.index(sc)]
            r = config.kerBlur[scaleList.index(sc)]
            gausFilt.updateParams(I_tar.size(), ca.Vec3Df(r, r, r),
                                  ca.Vec3Di(s, s, s))
            gausFilt.filter(I_tar_blur, I_tar, temp)
            gausFilt.filter(I_src_blur, I_src, temp)
            resampler.downsampleImage(scratchI, I_src_blur)
            resampler.downsampleImage(scratchITar, I_tar_blur)

        if scaleManager.isFirstScale():
            scratchF.setGrid(curGrid)
            scratchITar.setGrid(curGrid)
            ca.SetToIdentity(scratchF)
            ca.ApplyH(scratchISrc, scratchI, scratchF)

        else:
            compF.setGrid(scratchF.grid())
            ca.ComposeHH(compF, scratchF, h)
            resampler.updateHField(scratchF)
            resampler.updateHField(compF)
            ca.Copy(scratchF, compF)
            ca.ApplyH(scratchISrc, scratchI, compF)

    for sc in scaleList:
        SetScale(scaleList.index(sc))

        #Set the optimize parameters in the IDiff configuration object
        idConf.optim.Niter = config.iters[scaleList.index(sc)]
        idConf.optim.stepSize = config.epsReg[scaleList.index(sc)]
        idConf.idiff.regWeight = config.sigReg[scaleList.index(sc)]
        ca.Copy(idConf.study.I0, scratchISrc)
        ca.Copy(idConf.study.I1, scratchITar)
        idConf.io.plotEvery = config.iters[scaleList.index(sc)]

        h = IDiff.Matching.Matching(idConf)
        tempScr = scratchISrc.copy()
        ca.ApplyH(tempScr, scratchISrc, h)

        #Plot the images to see the change
        cd.DispImage(scratchISrc - scratchITar,
                     rng=[-2, 2],
                     title='Orig Diff',
                     colorbar=True)
        cd.DispImage(tempScr - scratchITar,
                     rng=[-2, 2],
                     title='Reg Diff',
                     colorbar=True)

        # common.DebugHere()

        # I_src_def = idConf.study.I0.copy()

        # scratchITar = idConf.study.I1
        # eps = config.epsReg[scaleList.index(sc)]
        # sigma = config.sigReg[scaleList.index(sc)]
        # nIter = config.iters[scaleList.index(sc)]
        # # common.DebugHere()
        # [I_src_def, h, energy] = apps.IDiff(scratchISrc, scratchITar, eps, sigma, nIter, plot=True, verbose=1)
    ca.ComposeHH(scratchF, compF, h)
    I_src_def = idConf.study.I0.copy()

    return I_src_def, scratchF
def GeodesicShooting(cf):

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(GeodesicShootingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.useCUDA else ca.MEM_HOST
    #common.DebugHere()
    I0 = common.LoadITKImage(cf.study.I0, mType)
    m0 = common.LoadITKField(cf.study.m0, mType)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    # set up diffOp
    if mType == ca.MEM_HOST:
        diffOp = ca.FluidKernelFFTCPU()
    else:
        diffOp = ca.FluidKernelFFTGPU()
    diffOp.setAlpha(cf.diffOpParams[0])
    diffOp.setBeta(cf.diffOpParams[1])
    diffOp.setGamma(cf.diffOpParams[2])
    diffOp.setGrid(grid)

    g = ca.Field3D(grid, mType)
    ginv = ca.Field3D(grid, mType)
    mt = ca.Field3D(grid, mType)
    It = ca.Image3D(grid, mType)
    t = [
        x * 1. / cf.integration.nTimeSteps
        for x in range(cf.integration.nTimeSteps + 1)
    ]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    scratchV1 = ca.Field3D(grid, mType)
    scratchV2 = ca.Field3D(grid, mType)
    scratchV3 = ca.Field3D(grid, mType)
    # scale momenta to shoot
    cf.study.scaleMomenta = float(cf.study.scaleMomenta)
    if abs(cf.study.scaleMomenta) > 0.000000:
        ca.MulC_I(m0, float(cf.study.scaleMomenta))
        CAvmCommon.IntegrateGeodesic(m0,t,diffOp, mt, g, ginv,\
                                     scratchV1,scratchV2,scratchV3,\
                                     keepstates=checkpointstates,keepinds=checkpointinds,
                                     Ninv=cf.integration.NIterForInverse, integMethod = cf.integration.integMethod)
    else:
        ca.Copy(It, I0)
        ca.Copy(mt, m0)
        ca.SetToIdentity(ginv)
        ca.SetToIdentity(g)

    # write output
    if cf.io.outputPrefix is not None:
        # scale back shotmomenta before writing
        if abs(cf.study.scaleMomenta) > 0.000000:
            ca.ApplyH(It, I0, ginv)
            ca.CoAd(mt, ginv, m0)
            ca.DivC_I(mt, float(cf.study.scaleMomenta))

        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
        common.SaveITKField(mt, cf.io.outputPrefix + "m1.mhd")
        common.SaveITKField(ginv, cf.io.outputPrefix + "phiinv.mhd")
        common.SaveITKField(g, cf.io.outputPrefix + "phi.mhd")
        GeodesicShootingPlots(g, ginv, I0, It, cf)
        if cf.io.saveFrames:
            SaveFrames(checkpointstates, checkpointinds, I0, It, m0, mt, cf)
def MatchingImageMomentaPlots(cf,
                              geodesicState,
                              tDiscGeodesic,
                              EnergyHistory,
                              m0,
                              J1,
                              n1,
                              writeOutput=True):
    """
    Do some summary plots for MatchingImageMomenta
    """

    #ENERGY
    fig = plt.figure(1)
    plt.clf()
    fig.patch.set_facecolor('white')

    TE = [row[0] for row in EnergyHistory]
    VE = [row[1] for row in EnergyHistory]
    IE = [row[2] for row in EnergyHistory]
    ME = [row[3] for row in EnergyHistory]
    plt.subplot(2, 2, 1)
    plt.plot(TE)
    plt.title('Total Energy')
    plt.hold(False)
    plt.subplot(2, 2, 2)
    plt.plot(VE)
    plt.title('Vector Energy')
    plt.hold(False)
    plt.subplot(2, 2, 3)
    plt.plot(IE)
    plt.title('Image Match Energy')
    plt.hold(False)
    plt.subplot(2, 2, 4)
    plt.plot(ME)
    plt.title('Momenta Match Energy')
    plt.hold(False)
    plt.draw()
    plt.show()
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'energy.pdf')

    # GEODESIC INITIAL CONDITIONS and RHO and RHO inv
    CAvmHGMCommon.HGMIntegrateGeodesic(geodesicState.p0, geodesicState.s,
                                       geodesicState.diffOp, geodesicState.p,
                                       geodesicState.rho, geodesicState.rhoinv,
                                       tDiscGeodesic, geodesicState.Ninv,
                                       geodesicState.integMethod)

    fig = plt.figure(2)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(2, 2, 1)
    display.DispImage(geodesicState.J0,
                      'J0',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.subplot(2, 2, 2)
    ca.ApplyH(geodesicState.J, geodesicState.J0, geodesicState.rhoinv)
    display.DispImage(geodesicState.J,
                      'J1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)

    plt.subplot(2, 2, 3)
    display.GridPlot(geodesicState.rhoinv,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('rho^{-1}')
    plt.subplot(2, 2, 4)
    display.GridPlot(geodesicState.rho,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('rho')
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'def.pdf')

    # MATCHING DIFFERENCE IMAGES
    grid = geodesicState.J0.grid()
    mType = geodesicState.J0.memType()
    imdiff = ca.ManagedImage3D(grid, mType)

    # Image matching
    ca.Copy(imdiff, geodesicState.J)
    ca.Sub_I(imdiff, J1)
    fig = plt.figure(3)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(1, 3, 1)
    display.DispImage(geodesicState.J0,
                      'Source J0',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.colorbar()

    plt.subplot(1, 3, 2)
    display.DispImage(J1, 'Target J1', newFig=False, sliceIdx=cf.io.plotSlice)
    plt.colorbar()

    plt.subplot(1, 3, 3)
    display.DispImage(imdiff,
                      'rho.J0-J1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.colorbar()
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'diffImage.pdf')

    # Momenta matching
    if mType == ca.MEM_DEVICE:
        scratchV1 = ca.Field3D(grid, mType)
        scratchV2 = ca.Field3D(grid, mType)
        scratchV3 = ca.Field3D(grid, mType)
    else:
        scratchV1 = ca.ManagedField3D(grid, mType)
        scratchV2 = ca.ManagedField3D(grid, mType)
        scratchV3 = ca.ManagedField3D(grid, mType)

    fig = plt.figure(4)
    plt.clf()
    fig.patch.set_facecolor('white')
    ca.Copy(scratchV1, m0)
    scratchV1.toType(ca.MEM_HOST)
    m0_x, m0_y, m0_z = scratchV1.asnp()
    plt.subplot(2, 3, 1)
    plt.imshow(np.squeeze(m0_x))
    plt.colorbar()
    plt.title('X: Source m0 ')
    plt.subplot(2, 3, 4)
    plt.imshow(np.squeeze(m0_y))
    plt.colorbar()
    plt.title('Y: Source m0')

    ca.Copy(scratchV2, n1)
    scratchV2.toType(ca.MEM_HOST)
    n1_x, n1_y, n1_z = scratchV2.asnp()
    plt.subplot(2, 3, 2)
    plt.imshow(np.squeeze(n1_x))
    plt.colorbar()
    plt.title('X: Target n1')
    plt.subplot(2, 3, 5)
    plt.imshow(np.squeeze(n1_y))
    plt.colorbar()
    plt.title('Y: Target n1')

    ca.CoAd(scratchV3, geodesicState.rhoinv, m0)
    ca.Sub_I(scratchV3, n1)
    scratchV3.toType(ca.MEM_HOST)
    diff_x, diff_y, diff_z = scratchV3.asnp()
    plt.subplot(2, 3, 3)
    plt.imshow(np.squeeze(diff_x))
    plt.colorbar()
    plt.title('X: rho.m0-n1')
    plt.subplot(2, 3, 6)
    plt.imshow(np.squeeze(diff_y))
    plt.colorbar()
    plt.title('Y: rho.m0-n1')

    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'diffMomenta.pdf')

    del scratchV1, scratchV2, scratchV3
    del imdiff
Example #20
0
def BuildHGM(cf):
    """Worker for running Hierarchical Geodesic Model (HGM) 
n    for group geodesic estimation on a subset of individuals. 
    Runs HGM on this subset sequentially. The variations retuned
    are summed up to get update for all individuals"""

    size = Compute.GetMPIInfo()['size']
    rank = Compute.GetMPIInfo()['rank']
    name = Compute.GetMPIInfo()['name']
    localRank = Compute.GetMPIInfo()['local_rank']
    nodename = socket.gethostname()

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # just one reporter process on each node
    isReporter = rank == 0
    cf.study.numSubjects = len(cf.study.subjectIntercepts)
    if isReporter:
        # Output loaded config
        if cf.io.outputPrefix is not None:
            cfstr = Config.ConfigToYAML(HGMConfigSpec, cf)
            with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
                f.write(cfstr)
    #common.DebugHere()

    # if MPI check if processes are greater than number of subjects. it is okay if there are more subjects than processes

    if cf.compute.useMPI and (cf.study.numSubjects < cf.compute.numProcesses):
        raise Exception("Please don't use more processes " +
                        "than total number of individuals")

    # subdivide data, create subsets for this thread to work on
    nodeSubjectIds = cf.study.subjectIds[rank::cf.compute.numProcesses]
    nodeIntercepts = cf.study.subjectIntercepts[rank::cf.compute.numProcesses]
    nodeSlopes = cf.study.subjectSlopes[rank::cf.compute.numProcesses]
    nodeBaselineTimes = cf.study.subjectBaselineTimes[rank::cf.compute.
                                                      numProcesses]
    sys.stdout.write(
        "This is process %d of %d with name: %s on machinename: %s and local rank: %d.\nnodeIntercepts: %s\n nodeSlopes: %s\n nodeBaselineTimes: %s\n"
        % (rank, size, name, nodename, localRank, nodeIntercepts, nodeSlopes,
           nodeBaselineTimes))

    # mem type is determined by whether or not we're using CUDA
    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST

    # load data in memory
    # load intercepts
    J = [
        common.LoadITKImage(f, mType) if isinstance(f, str) else f
        for f in nodeIntercepts
    ]

    # load slopes
    n = [
        common.LoadITKField(f, mType) if isinstance(f, str) else f
        for f in nodeSlopes
    ]

    # get imGrid from data
    imGrid = J[0].grid()

    # create time array with checkpointing info for group geodesic
    (t, Jind, gCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsGroup,
                                           nodeBaselineTimes, 0.0000001)
    tdiscGroup = CAvmHGMCommon.HGMSetupTimeDiscretizationGroup(
        t, J, n, Jind, gCpinds, mType, nodeSubjectIds)

    # create time array with checkpointing info for residual geodesic
    (s, scratchInd, rCpinds) = HGMSetUpTimeArray(cf.optim.nTimeStepsResidual,
                                                 [1.0], 0.0000001)
    tdiscResidual = CAvmHGMCommon.HGMSetupTimeDiscretizationResidual(
        s, rCpinds, imGrid, mType)

    # create group state and residual state
    groupState = CAvmHGMCommon.HGMGroupState(
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsGroup[0],
        cf.vectormomentum.diffOpParamsGroup[1],
        cf.vectormomentum.diffOpParamsGroup[2],
        t,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeGroup,
        integMethod=cf.optim.integMethodGroup)

    #ca.Copy(groupState.I0, common.LoadITKImage('/usr/sci/projects/ADNI/nikhil/software/vectormomentumtest/TestData/FlowerData/Longitudinal/GroupGeodesic/I0.mhd', mType))

    # note that residual state is treated a scratch variable in this algorithm and reused for computing residual geodesics of multiple individual
    residualState = CAvmHGMCommon.HGMResidualState(
        None,
        None,
        imGrid,
        mType,
        cf.vectormomentum.diffOpParamsResidual[0],
        cf.vectormomentum.diffOpParamsResidual[1],
        cf.vectormomentum.diffOpParamsResidual[2],
        s,
        cf.optim.NIterForInverse,
        cf.vectormomentum.varIntercept,
        cf.vectormomentum.varSlope,
        cf.vectormomentum.varInterceptReg,
        cf.optim.stepSizeResidual,
        integMethod=cf.optim.integMethodResidual)

    # start up the memory manager for scratch variables
    ca.ThreadMemoryManager.init(imGrid, mType, 0)

    # need some host memory in np array format for MPI reductions
    if cf.compute.useMPI:
        mpiImageBuff = None if mType == ca.MEM_HOST else ca.Image3D(
            imGrid, ca.MEM_HOST)
        mpiFieldBuff = None if mType == ca.MEM_HOST else ca.Field3D(
            imGrid, ca.MEM_HOST)
    for i in range(len(groupState.t) - 1, -1, -1):
        if tdiscGroup[i].J is not None:
            indx_last_individual = i
            break
    '''
    # initial template image
    ca.SetMem(groupState.I0, 0.0)
    tmp = ca.ManagedImage3D(imGrid, mType)

    for tdisc in tdiscGroup:
        if tdisc.J is not None:
            ca.Copy(tmp, tdisc.J)
            groupState.I0 += tmp
    del tmp
    if cf.compute.useMPI:
        Compute.Reduce(groupState.I0, mpiImageBuff)
    
    # divide by total num subjects
    groupState.I0 /= cf.study.numSubjects
    '''

    # run the loop

    for it in range(cf.optim.Niter):
        # compute HGM variation for group
        HGMGroupVariation(groupState, tdiscGroup, residualState, tdiscResidual,
                          cf.io.outputPrefix, rank, it)
        common.CheckCUDAError("Error after HGM iteration")
        # compute gradient for momenta (m is used as scratch)
        # if there are multiple nodes we'll need to sum across processes now
        if cf.compute.useMPI:
            # do an MPI sum
            Compute.Reduce(groupState.sumSplatI, mpiImageBuff)
            Compute.Reduce(groupState.sumJac, mpiImageBuff)
            Compute.Reduce(groupState.madj, mpiFieldBuff)
            # also sum up energies of other nodes
            # intercept
            Eintercept = np.array([groupState.EnergyHistory[-1][1]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eintercept,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][1] = Eintercept[0]

            Eslope = np.array([groupState.EnergyHistory[-1][2]])
            mpi4py.MPI.COMM_WORLD.Allreduce(mpi4py.MPI.IN_PLACE,
                                            Eslope,
                                            op=mpi4py.MPI.SUM)
            groupState.EnergyHistory[-1][2] = Eslope[0]

        ca.Copy(groupState.m, groupState.m0)
        groupState.diffOp.applyInverseOperator(groupState.m)
        ca.Sub_I(groupState.m, groupState.madj)
        #groupState.diffOp.applyOperator(groupState.m)
        # now take gradient step in momenta for group
        if cf.optim.method == 'FIXEDGD':
            # take fixed stepsize gradient step
            ca.Add_MulC_I(groupState.m0, groupState.m, -cf.optim.stepSizeGroup)
        else:
            raise Exception("Unknown optimization scheme: " + cf.optim.method)
        # end if

        # now divide to get the new base image for group
        ca.Div(groupState.I0, groupState.sumSplatI, groupState.sumJac)

        # keep track of energy in this iteration
        if isReporter and cf.io.plotEvery > 0 and ((
            (it + 1) % cf.io.plotEvery == 0) or (it == cf.optim.Niter - 1)):
            HGMPlots(cf,
                     groupState,
                     tdiscGroup,
                     residualState,
                     tdiscResidual,
                     indx_last_individual,
                     writeOutput=True)

        if isReporter:
            (VEnergy, IEnergy, SEnergy) = groupState.EnergyHistory[-1]
            print datetime.datetime.now().time(
            ), " Iter", it, "of", cf.optim.Niter, ":", VEnergy + IEnergy + SEnergy, '(Total) = ', VEnergy, '(Vector) + ', IEnergy, '(Intercept) + ', SEnergy, '(Slope)'

    # write output images and fields
    HGMWriteOutput(cf, groupState, tdiscGroup, isReporter)
Example #21
0
def HGMPlots(cf,
             groupState,
             tDiscGroup,
             residualState,
             tDiscResidual,
             index_individual,
             writeOutput=True):
    """
    Do some summary plots for HGM
    """

    #ENERGY
    fig = plt.figure(1)
    plt.clf()
    fig.patch.set_facecolor('white')

    TE = [sum(x) for x in groupState.EnergyHistory]
    VE = [row[0] for row in groupState.EnergyHistory]
    IE = [row[1] for row in groupState.EnergyHistory]
    SE = [row[2] for row in groupState.EnergyHistory]
    TE = TE[1:]
    VE = VE[1:]
    IE = IE[1:]
    SE = SE[1:]
    plt.subplot(2, 2, 1)
    plt.plot(TE)
    plt.title('Total Energy')
    plt.hold(False)
    plt.subplot(2, 2, 2)
    plt.plot(VE)
    plt.title('Vector Energy')
    plt.hold(False)
    plt.subplot(2, 2, 3)
    plt.plot(IE)
    plt.title('Intercept Energy')
    plt.hold(False)
    plt.subplot(2, 2, 4)
    plt.plot(SE)
    plt.title('Slope Energy')
    plt.hold(False)
    plt.draw()
    plt.show()
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'energy.pdf')

    # GROUP INITIAL CONDITIONS and PSI and PSI inv
    # shoot group geodesic forward
    CAvmHGMCommon.HGMIntegrateGeodesic(groupState.m0, groupState.t,
                                       groupState.diffOp, groupState.m,
                                       groupState.g, groupState.ginv,
                                       tDiscGroup, groupState.Ninv,
                                       groupState.integMethod)

    fig = plt.figure(2)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(2, 2, 1)
    display.DispImage(groupState.I0,
                      'I0',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)

    plt.subplot(2, 2, 2)
    ca.ApplyH(groupState.I, groupState.I0, groupState.ginv)
    display.DispImage(groupState.I,
                      'I1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)

    plt.subplot(2, 2, 3)
    display.GridPlot(groupState.ginv,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('psi^{-1}')
    plt.subplot(2, 2, 4)
    display.GridPlot(groupState.g,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('psi')
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'groupdef.pdf')

    # RESIDUAL INITIAL CONDITIONS and RHO and RHO inv
    ca.ApplyH(groupState.I, groupState.I0, groupState.ginv)
    residualState.J0 = groupState.I
    residualState.p0 = tDiscGroup[index_individual].p0
    CAvmHGMCommon.HGMIntegrateGeodesic(residualState.p0, residualState.s,
                                       residualState.diffOp, residualState.p,
                                       residualState.rho, residualState.rhoinv,
                                       tDiscResidual, residualState.Ninv,
                                       residualState.integMethod)

    fig = plt.figure(3)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(2, 2, 1)
    display.DispImage(residualState.J0,
                      'J0',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.subplot(2, 2, 2)
    ca.ApplyH(residualState.J, residualState.J0, residualState.rhoinv)
    display.DispImage(residualState.J,
                      'J1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)

    plt.subplot(2, 2, 3)
    display.GridPlot(residualState.rhoinv,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('rho^{-1}')
    plt.subplot(2, 2, 4)
    display.GridPlot(residualState.rho,
                     every=cf.io.quiverEvery,
                     color='k',
                     sliceIdx=cf.io.plotSlice,
                     isVF=False)
    plt.axis('equal')
    plt.axis('off')
    plt.title('rho')
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'resdef.pdf')

    # MATCHING DIFFERENCE IMAGES
    grid = groupState.I0.grid()
    mType = groupState.I0.memType()
    imdiff = ca.ManagedImage3D(grid, mType)
    vecdiff = ca.ManagedField3D(grid, mType)

    # Intercept matching
    ca.Copy(imdiff, residualState.J)
    ca.Sub_I(imdiff, tDiscGroup[index_individual].J)
    fig = plt.figure(4)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(1, 3, 1)
    display.DispImage(residualState.J0,
                      'Source J0',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.colorbar()

    plt.subplot(1, 3, 2)
    display.DispImage(tDiscGroup[index_individual].J,
                      'Target J1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.colorbar()

    plt.subplot(1, 3, 3)
    display.DispImage(imdiff,
                      'rho.J0-J1',
                      newFig=False,
                      sliceIdx=cf.io.plotSlice)
    plt.colorbar()
    if cf.io.outputPrefix != None and writeOutput:
        plt.savefig(cf.io.outputPrefix + 'diffintercept.pdf')

    # Slope matching
    '''
    ca.CoAd(groupState.m,groupState.ginv,groupState.m0)
    ca.CoAd(vecdiff,residualState.rhoinv,groupState.m)
    n0 = ca.Field3D(grid, ca.MEM_HOST)
    n1 = ca.Field3D(grid, ca.MEM_HOST)
    ca.Copy(n0,groupState.m)
    ca.Copy(n1,tDiscGroup[index_individual].n)    
    ca.Sub_I(vecdiff, tDiscGroup[index_individual].n)
    vecdiff.toType(ca.MEM_HOST)
    n0_x, n0_y, n0_z = n0.asnp()
    n1_x, n1_y, n1_z = n1.asnp()
    diff_x, diff_y, diff_z = vecdiff.asnp()

    fig = plt.figure(5)
    plt.clf()
    fig.patch.set_facecolor('white')

    plt.subplot(2,3,1)
    plt.imshow(np.squeeze(n0_x)); plt.colorbar(); plt.title('X: Source n0 ')

    plt.subplot(2,3,2)
    plt.imshow(np.squeeze(n1_x)); plt.colorbar(); plt.title('X: Target n1')

    plt.subplot(2,3,3)
    plt.imshow(np.squeeze(diff_x)); plt.colorbar(); plt.title('X: rho.n0-n1')

    plt.subplot(2,3,4)
    plt.imshow(np.squeeze(n0_y)); plt.colorbar(); plt.title('Y: Source n0')

    plt.subplot(2,3,5)
    plt.imshow(np.squeeze(n1_y)); plt.colorbar(); plt.title('Y: Target n1')

    plt.subplot(2,3,6)
    plt.imshow(np.squeeze(diff_y)); plt.colorbar(); plt.title('Y: rho.n0-n1')

    if cf.io.outputPrefix != None and writeOutput: plt.savefig(cf.io.outputPrefix+'diffslope.pdf')
    '''
    del imdiff
    del vecdiff
Example #22
0
Imprev = cc.LoadTIFF(filelist[0], mType, ds)
origin = [(Imprev.grid().size().x+1)/2.0, # origin for Affine matrix
          (Imprev.grid().size().y+1)/2.0,
          (Imprev.grid().size().z+1)/2.0]
scratchI = ca.Image3D(Imprev.grid(), Imprev.memType())
scratchI2 = ca.Image3D(Imprev.grid(), Imprev.memType())

# initialize dictionary
Adict = {'origin': origin}
Adict[files.get_file_dist(filelist[0])] = np.identity(3)

# if 'block1' in filelist[0]:
# move first image in block 1
if block == 1:
    tcentx, tcenty = cc.CenterImage(Imprev)
    ca.Copy(scratchI, Imprev)
    # first moves image up, second moves image left
    t = ca.Vec3Df(-75, 55, 0)   # double check this!
    ca.ComposeTranslation(Imprev, scratchI, t)
    ttot = [tcentx + t.x, tcenty + t.y]
    Adict[files.get_file_dist(filelist[0])] = np.array([[1, 0, tcentx + t.x],
                                                        [0, 1, tcenty + t.y],
                                                        [0, 0, 1]])

dist_prev = -30                 # assure correct numbering
for filename in filelist[1:]:
    dist = files.get_file_dist(filename)

    num_blanks = (dist - dist_prev)/30 - 1
    for _i in xrange(num_blanks):
        print 'blank'
Example #23
0
# # Convert the landmarks to real coordinates and exchange the ordering of the so live is going to T2

# realLM[:,1] = realLM[:,1] - 127.5
# flipLM = np.fliplr(realLM)

# # Solve for the TPS based off of the landmakrs
# spline = SolveSpline(flipLM)
# h = SplineToHField(spline, T2Grid, memT)
# print ca.MinMax(h)
# liveDef = T2.copy()
# cc.ApplyHReal(liveDef,live,h)

# Variance equalize the volumes and blur the live
T2_VE = ca.Image3D(T2.grid(), memT)
live_VE = ca.Image3D(liveDef.grid(), memT)
ca.Copy(T2_VE, T2)
cc.VarianceEqualize_I(T2_VE, sigma=5)
ca.Copy(live_VE, liveDef)
cc.VarianceEqualize_I(live_VE, sigma=5)
gausfilt = ca.GaussianFilterGPU()
gausfilt.updateParams(live_VE.size(), ca.Vec3Df(3, 3, 3), ca.Vec3Di(3, 3, 3))
live_VEfilt = ca.Image3D(live_VE.grid(), memT)
temp = ca.Image3D(live_VE.grid(), memT)
gausfilt.filter(live_VEfilt, live_VE, temp)
dispslice = [128, 120, 128]

# Display some initial images
cd.Disp3Pane(live_VEfilt,
             rng=[-3, 3],
             sliceIdx=dispslice,
             title='Live VE Filtered')
def WarpGradient(p, t, Imsmts, cpinds, cpstates, msmtinds, gradAtMsmts):

    # shoot the geodesic forward
    CAvmCommon.IntegrateGeodesic(p.m0,t,p.diffOp, \
                                 p.m, p.g, p.ginv,\
                                 p.scratchV1, p.scratchV2,p. scratchV3,\
                                 cpstates, cpinds,\
                                 Ninv=p.nInv, integMethod = p.integMethod, RK4=p.scratchV4,scratchG=p.scratchV5)

    IEnergy = 0.0
    # compute residuals for each measurement timepoint along with computing energy
    for i in range(len(Imsmts)):
        if msmtinds[i] != -1:
            (g, ginv) = cpstates[msmtinds[i]]
            ca.ApplyH(gradAtMsmts[i], p.I0, ginv)
            ca.Sub_I(gradAtMsmts[i], Imsmts[i])
            # while we have residual, save the image energy
            IEnergy += ca.Sum2(
                gradAtMsmts[i]) / (2 * p.sigma * p.sigma * float(p.I0.nVox()))
            ca.DivC_I(gradAtMsmts[i],
                      p.sigma * p.sigma)  # gradient at measurement
        elif msmtinds[i] == -1:
            ca.Copy(gradAtMsmts[i], p.I0)
            ca.Sub_I(gradAtMsmts[i], Imsmts[i])
            # while we have residual, save the image energy
            IEnergy += ca.Sum2(
                gradAtMsmts[i]) / (2 * p.sigma * p.sigma * float(p.I0.nVox()))
            ca.DivC_I(gradAtMsmts[i],
                      p.sigma * p.sigma)  # gradient at measurement

    # integrate backward
    CAvmCommon.IntegrateAdjoints(p.Iadj,p.madj,\
                                 p.I,p.m,p.Iadjtmp, p.madjtmp,p.scratchV1,\
                                 p.scratchV2,p.scratchV3,\
                                 p.I0,p.m0,\
                                 t, cpstates, cpinds,\
                                 gradAtMsmts,msmtinds,\
                                 p.diffOp,\
                                 p.integMethod, p.nInv, \
                                 scratchV3=p.scratchV7, scratchV4=p.g,scratchV5=p.ginv,scratchV6=p.scratchV8, scratchV7=p.scratchV9, \
                                 scratchV8=p.scratchV10,scratchV9=p.scratchV11,\
                                 RK4=p.scratchV4, scratchG=p.scratchV5, scratchGinv=p.scratchV6,\
                                 scratchI = p.scratchI1)

    # compute gradient
    ca.Copy(p.scratchV1, p.m0)
    p.diffOp.applyInverseOperator(p.scratchV1)
    # while we have velocity, save the vector energy
    VEnergy = 0.5 * ca.Dot(p.m0, p.scratchV1) / float(p.I0.nVox())

    ca.Sub_I(p.scratchV1, p.madj)
    #p.diffOp.applyOperator(p.scratchV1)

    # compute closed from terms for image update
    # p.Iadjtmp and p.I will be used as scratch images
    scratchI = p.scratchI1  #reference assigned
    imOnes = p.I  #reference assigned
    ca.SetMem(imOnes, 1.0)
    ca.SetMem(p.sumSplatI, 0.0)
    ca.SetMem(p.sumJac, 0.0)
    #common.DebugHere()
    for i in range(len(Imsmts)):
        # TODO: check these indexings for cases when timepoint 0
        # is not checkpointed
        if msmtinds[i] != -1:
            (g, ginv) = cpstates[msmtinds[i]]
            CAvmCommon.SplatSafe(scratchI, ginv, Imsmts[i])
            ca.Add_I(p.sumSplatI, scratchI)
            CAvmCommon.SplatSafe(scratchI, ginv, imOnes)
            ca.Add_I(p.sumJac, scratchI)
        elif msmtinds[i] == -1:
            ca.Add_I(p.sumSplatI, Imsmts[i])
            ca.Add_I(p.sumJac, imOnes)
    return (p.scratchV1, p.sumJac, p.sumSplatI, VEnergy, IEnergy)
Example #25
0
def GeoRegIteration(subid, cf, p, t, Imsmts, cpinds, cpstates, msmtinds,
                    gradAtMsmts, EnergyHistory, it):
    # compute gradient for regression
    (grad_m, sumJac, sumSplatI, VEnergy,
     IEnergy) = GeoRegGradient(p, t, Imsmts, cpinds, cpstates, msmtinds,
                               gradAtMsmts)

    # do energy related stuff for printing and bookkeeping
    #if it>0:
    EnergyHistory.append([VEnergy + IEnergy, VEnergy, IEnergy])
    print VEnergy + IEnergy, '(Total) = ', VEnergy, '(Vector)+', IEnergy, '(Image)'
    # plot some stuff
    if cf.io.plotEvery > 0 and (((it + 1) % cf.io.plotEvery) == 0
                                or it == cf.optim.Niter - 1):
        GeoRegPlots(subid, cf, p, t, Imsmts, cpinds, cpstates, msmtinds,
                    gradAtMsmts, EnergyHistory)
    # end if

    if cf.optim.method == 'FIXEDGD':
        # automatic stepsize selection in the first three steps
        if it == 1:
            # TODO: BEWARE There are hardcoded numbers here for 2D and 3D
            #first find max absolute value across voxels in gradient
            temp = ca.Field3D(grad_m.grid(), ca.MEM_HOST)
            ca.Copy(temp, grad_m)
            temp_x, temp_y, temp_z = temp.asnp()
            temp1 = np.square(temp_x.flatten()) + np.square(
                temp_y.flatten()) + np.square(temp_z.flatten())
            medianval = np.median(temp1[temp1 > 0.0000000001])
            del temp, temp1, temp_x, temp_y, temp_z
            #2D images for 2000 iters
            #p.stepSize = float(0.000000002*medianval)
            #3D images for 2000 iters
            p.stepSize = float(0.000002 * medianval)

            print 'rank:', Compute.GetMPIInfo(
            )['rank'], ', localRank:', Compute.GetMPIInfo(
            )['local_rank'], 'subid: ', subid, ' Selecting initial step size in the beginning to be ', str(
                p.stepSize)

        if it > 3:
            totalEnergyDiff = EnergyHistory[-1][0] - EnergyHistory[-2][0]
            if totalEnergyDiff > 0.0:
                if cf.optim.maxPert is not None:
                    print 'rank:', Compute.GetMPIInfo(
                    )['rank'], ', localRank:', Compute.GetMPIInfo(
                    )['local_rank'], 'subid: ', subid, ' Reducing stepsize for gradient descent by ', str(
                        cf.optim.maxPert *
                        100), '%. The new step size is ', str(
                            p.stepSize * (1 - cf.optim.maxPert))
                    p.stepSize = p.stepSize * (1 - cf.optim.maxPert)
        # take gradient descent step
        ca.Add_MulC_I(p.m0, grad_m, -p.stepSize)
    else:
        raise Exception("Unknown optimization scheme: " + cf.optim.optMethod)
    # end if

    # now divide to get new base image
    ca.Div(p.I0, sumSplatI, sumJac)

    return (EnergyHistory)