Idiff = T2_VE - live_VEfilt_ID cd.Disp3Pane(Idiff, rng=[-3, 3], sliceIdx=dispslice) cd.EnergyPlot(Ienergy, legend=['Reg', 'Data', 'Total']) cd.DispHGrid(Iphi) print ca.MinMax(Iphi) # Compose the deformations and apply the total deformation to the initial live volume # tempDef = ca.Field3D(phi.grid(), memT) totDef = ca.Field3D(phi.grid(), memT) ca.ComposeHH(totDef, phi, Iphi, ca.BACKGROUND_STRATEGY_CLAMP) # ca.ComposeHH(totDef, h, tempDef, ca.BACKGROUND_STRATEGY_CLAMP) #Apply the deformation to the TPS live volume and rotate to the original volume live_T2reg_rot = T2.copy() cc.HtoReal(totDef) cc.ApplyHReal(live_T2reg_rot, liveDef, totDef) cd.Disp3Pane(live_T2reg_rot) # live_T2reg = T2.copy() # cc.ApplyAffineReal(live_T2reg,live_T2reg_rot,np.linalg.inv(rotMat)) # cd.Disp3Pane(live_T2reg) if write: cc.WriteMHA(live_T2reg_rot, SaveDir + 'M13_01_live_as_MRI_full_bw_256_roty-119_flipy.mha') cc.WriteMHA(live_T2reg, SaveDir + 'M13_01_live_as_MRI_full_bw_256.mha') cc.WriteMHA(totDef, SaveDir + 'M13_01_live_to_MRI_roty-119_flipy_full_256.mha') paramDict = {} paramDict['Number of Itterations ER: '] = EnIter paramDict['Sigma ER: '] = Esigma
def main(): # Extract the Monkey number and section number from the command line global frgNum global secOb mkyNum = sys.argv[1] secNum = sys.argv[2] frgNum = int(sys.argv[3]) write = True # if not os.path.exists(os.path.expanduser('~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml'.format(mkyNum,secNum))): # cf = initial(secNum, mkyNum) try: secOb = Config.Load( secSpec, pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum))) except IOError as e: try: temp = Config.LoadYAMLDict(pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum)), include=False) secOb = Config.MkConfig(temp, secSpec) except IOError: print 'It appears there is no configuration file for this section. Please initialize one and restart.' sys.exit() if frgNum == int(secOb.yamlList[frgNum][-6]): Fragmenter() try: secOb = Config.Load( secSpec, pth.expanduser( '~/korenbergNAS/3D_database/Working/configuration_files/SidescapeRelateBlockface/M{0}/section_{1}/include_configFile.yaml' .format(mkyNum, secNum))) except IOError: print 'It appeas that the include yaml file list does not match your fragmentation number. Please check them and restart.' sys.exit() if not pth.exists( pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))): common.Mkdir_p( pth.expanduser(secOb.ssiOutPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))): common.Mkdir_p( pth.expanduser(secOb.bfiOutPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))): os.mkdir(pth.expanduser(secOb.ssiSrcPath + 'frag{0}'.format(frgNum))) if not pth.exists( pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))): os.mkdir(pth.expanduser(secOb.bfiSrcPath + 'frag{0}'.format(frgNum))) frgOb = Config.MkConfig(secOb.yamlList[frgNum], frgSpec) ssiSrc, bfiSrc, ssiMsk, bfiMsk = Loader(frgOb, ca.MEM_HOST) #Extract the saturation Image from the color iamge bfiHsv = common.FieldFromNPArr( matplotlib.colors.rgb_to_hsv( np.rollaxis(np.array(np.squeeze(bfiSrc.asnp())), 0, 3)), ca.MEM_HOST) bfiHsv.setGrid(bfiSrc.grid()) bfiSat = ca.Image3D(bfiSrc.grid(), bfiHsv.memType()) ca.Copy(bfiSat, bfiHsv, 1) #Histogram equalize, normalize and mask the blockface saturation image bfiSat = cb.HistogramEqualize(bfiSat, 256) bfiSat.setGrid(bfiSrc.grid()) bfiSat *= -1 bfiSat -= ca.Min(bfiSat) bfiSat /= ca.Max(bfiSat) bfiSat *= bfiMsk bfiSat.setGrid(bfiSrc.grid()) #Write out the blockface region after adjusting the colors with a format that supports header information if write: common.SaveITKImage( bfiSat, pth.expanduser(secOb.bfiSrcPath + 'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_sat.nrrd'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Set the sidescape grid relative to that of the blockface ssiSrc.setGrid(ConvertGrid(ssiSrc.grid(), bfiSat.grid())) ssiMsk.setGrid(ConvertGrid(ssiMsk.grid(), bfiSat.grid())) ssiSrc *= ssiMsk #Write out the sidescape masked image in a format that stores the header information if write: common.SaveITKImage( ssiSrc, pth.expanduser(secOb.ssiSrcPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}.nrrd'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Update the image parameters of the sidescape image for future use frgOb.imSize = ssiSrc.size().tolist() frgOb.imOrig = ssiSrc.origin().tolist() frgOb.imSpac = ssiSrc.spacing().tolist() updateFragOb(frgOb) #Find the affine transform between the two fragments bfiAff, ssiAff, aff = Affine(bfiSat, ssiSrc, frgOb) updateFragOb(frgOb) #Write out the affine transformed images in a format that stores header information if write: common.SaveITKImage( bfiAff, pth.expanduser( secOb.bfiOutPath + 'frag{0}/M{1}_01_bfi_section_{2}_frag{0}_aff_ssi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) common.SaveITKImage( ssiAff, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_aff_bfi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) bfiVe = bfiAff.copy() ssiVe = ssiSrc.copy() cc.VarianceEqualize_I(bfiVe, sigma=frgOb.sigVarBfi, eps=frgOb.epsVar) cc.VarianceEqualize_I(ssiVe, sigma=frgOb.sigVarSsi, eps=frgOb.epsVar) #As of right now, the largest pre-computed FFT table is 2048, so resample onto that grid for registration regGrd = ConvertGrid( cc.MakeGrid(ca.Vec3Di(2048, 2048, 1), ca.Vec3Df(1, 1, 1), ca.Vec3Df(0, 0, 0)), ssiSrc.grid()) ssiReg = ca.Image3D(regGrd, ca.MEM_HOST) bfiReg = ca.Image3D(regGrd, ca.MEM_HOST) cc.ResampleWorld(ssiReg, ssiVe) cc.ResampleWorld(bfiReg, bfiVe) #Create the default configuration object for IDiff Matching and then set some parameters idCf = Config.SpecToConfig(IDiff.Matching.MatchingConfigSpec) idCf.compute.useCUDA = True idCf.io.outputPrefix = '/home/sci/blakez/IDtest/' #Run the registration ssiDef, phi = DefReg(ssiReg, bfiReg, frgOb, ca.MEM_DEVICE, idCf) #Turn the deformation into a displacement field so it can be applied to the large tif with C++ code affV = phi.copy() cc.ApplyAffineReal(affV, phi, np.linalg.inv(frgOb.affine)) ca.HtoV_I(affV) #Apply the found deformation to the input ssi ssiSrc.toType(ca.MEM_DEVICE) cc.HtoReal(phi) affPhi = phi.copy() ssiBfi = ssiSrc.copy() upPhi = ca.Field3D(ssiSrc.grid(), phi.memType()) cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine)) cc.ResampleWorld(upPhi, affPhi, bg=2) cc.ApplyHReal(ssiBfi, ssiSrc, upPhi) # ssiPhi = ca.Image3D(ssiSrc.grid(), phi.memType()) # upPhi = ca.Field3D(ssiSrc.grid(), phi.memType()) # cc.ResampleWorld(upPhi, phi, bg=2) # cc.ApplyHReal(ssiPhi, ssiSrc, upPhi) # ssiBfi = ssiSrc.copy() # cc.ApplyAffineReal(ssiBfi, ssiPhi, np.linalg.inv(frgOb.affine)) # #Apply affine to the deformation # affPhi = phi.copy() # cc.ApplyAffineReal(affPhi, phi, np.linalg.inv(frgOb.affine)) if write: common.SaveITKImage( ssiBfi, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_def_bfi.nrrd'.format( frgNum, secOb.mkyNum, secOb.secNum))) cc.WriteMHA( affPhi, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_real.mha'. format(frgNum, secOb.mkyNum, secOb.secNum))) cc.WriteMHA( affV, pth.expanduser( secOb.ssiOutPath + 'frag{0}/M{1}_01_ssi_section_{2}_frag{0}_to_bfi_disp.mha'. format(frgNum, secOb.mkyNum, secOb.secNum))) #Create the list of names that the deformation should be applied to # nameList = ['M15_01_0956_SideLight_DimLED_10x_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c1_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c2_ORG.tif', # 'M15_01_0956_TyrosineHydroxylase_Ben_10x_Stitching_c3_ORG.tif'] # appLarge(nameList, affPhi) common.DebugHere()