Example #1
0
def run_test(n_trials=200, pop_size = 20, n_gen = 500):

    number_of_trials = n_trials
    number_of_individuals = pop_size
    number_of_generations = n_gen
    
    prob_list = [problem.schwefel(dim = 10),
        problem.michalewicz(dim = 10),
        problem.rastrigin(dim = 10),
        problem.rosenbrock(dim = 10),
        problem.ackley(dim = 10),
        problem.griewank(dim = 10)]

    if __extensions__['gtop']:
        prob_list.append(problem.cassini_1())
        prob_list.append(problem.cassini_2())
        prob_list.append(problem.gtoc_1())
        prob_list.append(problem.rosetta())
        prob_list.append(problem.messenger_full())
        prob_list.append(problem.tandem(prob_id = 6, max_tof = 10))

    algo_list = [algorithm.pso(gen = number_of_generations),
                 algorithm.de(gen = number_of_generations,xtol=1e-30, ftol=1e-30),
                 algorithm.jde(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30),
                 algorithm.de_1220(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30),
                 algorithm.sa_corana(iter = number_of_generations*number_of_individuals,Ts = 1,Tf = 0.01),
                 algorithm.ihs(iter = number_of_generations*number_of_individuals),
                 algorithm.sga(gen = number_of_generations),
                 algorithm.cmaes(gen = number_of_generations,xtol=1e-30, ftol=1e-30),
                 algorithm.bee_colony(gen = number_of_generations/2)]
                 
    print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen))
    for prob in prob_list:
        print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension) )
        print('With Population Size: ' +  str(pop_size) )
        for algo in algo_list:
            print(' ' + str(algo))
            best = []
            best_x = []
            for i in range(0,number_of_trials):
                isl = island(algo,prob,number_of_individuals)
                isl.evolve(1)
                isl.join()
                best.append(isl.population.champion.f)
                best_x.append(isl.population.champion.x)
            print(' Best:\t' + str(min(best)[0]))
            print(' Mean:\t' + str(mean(best)))
            print(' Std:\t' + str(std(best)))
def problem_solver(n_trials=25):
    from PyGMO import problem, algorithm, island, archipelago
    from PyGMO.topology import fully_connected
    from numpy import mean, median
    import csv

    results = list()
    prob = problem.cassini_2()
    de_variants = [11, 13, 15, 17]
    f_variants = [0, 0.2, 0.5, 0.8, 1]
    cr_variants = [0.3, 0.9]
    np_variants = [10, 25, 50]

    for f in f_variants:
        for cr in cr_variants:
            for np in np_variants:
                algos = [algorithm.de(gen=np, f=f, cr=cr) for v in de_variants]

                for trial in range(n_trials):
                    archi = archipelago(topology=fully_connected())
                    for algo in algos:
                        archi.push_back(island(algo, prob, 25))
                    archi.evolve(30)
                    results.append(
                        min([isl.population.champion.f[0] for isl in archi]))

                with open('results.csv', 'a') as out:
                    out.write('%f;' % f)
                    out.write('%f;' % cr)
                    out.write('%f;' % np)
                    out.write('\n')

                    out.write('%f;' % mean(results))
                    out.write('%f;' % median(results))
                    out.write('%f;' % min(results))
                    out.write('%f;' % max(results))
                    out.write('\n')
                out.close()
def problem_solver(n_trials=25):
     from PyGMO import problem, algorithm, island, archipelago
     from PyGMO.topology import fully_connected
     from numpy import mean, median
     import csv

     results = list()
     prob = problem.cassini_2()
     de_variants = [11,13,15,17]
     f_variants = [0, 0.2, 0.5, 0.8, 1]
     cr_variants = [0.3, 0.9]
     np_variants = [10, 25, 50]

     for f in f_variants:
         for cr in cr_variants:
             for np in np_variants:
                 algos = [algorithm.de(gen=np, f=f, cr=cr) for v in de_variants]

                 for trial in range(n_trials):
                         archi = archipelago(topology=fully_connected())
                         for algo in algos:
                                 archi.push_back(island(algo,prob,25))
                         archi.evolve(30)
                         results.append(min([isl.population.champion.f[0] for isl in archi]))

                 with open('results.csv', 'a') as out:
                    out.write('%f;' % f)
                    out.write('%f;' % cr)
                    out.write('%f;' % np)
                    out.write('\n')

                    out.write('%f;' % mean(results))
                    out.write('%f;' % median(results))
                    out.write('%f;' % min(results))
                    out.write('%f;' % max(results))
                    out.write('\n')
                 out.close()
Example #4
0
def run_test(n_trials=200, pop_size=20, n_gen=500):
    """
    This function runs some tests on the algorthm. Use it to verify the correct installation
    of PyGMO.

    USAGE: PyGMO.run_test(n_trials=200, pop_size = 20, n_gen = 500)

    * n_trials: each algorithm will be called n_trials times on the same problem to then evaluate best, mean and std
    * pop_size: this determines the population size
    * n_gen: this regulates the maximim number of function evaluation

    """
    from PyGMO import problem, algorithm, island
    from numpy import mean, std
    number_of_trials = n_trials
    number_of_individuals = pop_size
    number_of_generations = n_gen

    prob_list = [
        problem.schwefel(
            dim=10), problem.rastrigin(
            dim=10), problem.rosenbrock(
            dim=10), problem.ackley(
            dim=10), problem.griewank(
            dim=10), problem.levy5(10)]
    if __extensions__['gtop']:
        prob_list.append(problem.cassini_1())
        prob_list.append(problem.gtoc_1())
        prob_list.append(problem.cassini_2())
        prob_list.append(problem.messenger_full())

    algo_list = [
        algorithm.pso(
            gen=number_of_generations),
        algorithm.mde_pbx(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.de(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.jde(
            gen=number_of_generations,
            memory=False,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.de_1220(
            gen=number_of_generations,
            memory=False,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.sa_corana(
            iter=number_of_generations *
            number_of_individuals,
            Ts=1,
            Tf=0.01),
        algorithm.ihs(
            iter=number_of_generations *
            number_of_individuals),
        algorithm.sga(
            gen=number_of_generations),
        algorithm.cmaes(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30,
            memory=False),
        algorithm.bee_colony(
            gen=number_of_generations /
            2)]
    print('\nTrials: ' + str(n_trials) + ' - Population size: ' +
          str(pop_size) + ' - Generations: ' + str(n_gen))
    for prob in prob_list:
        print('\nTesting problem: ' + prob.get_name() +
              ', Dimension: ' + str(prob.dimension))
        print('With Population Size: ' + str(pop_size))
        for algo in algo_list:
            print(' ' + str(algo))
            best = []
            best_x = []
            for i in range(0, number_of_trials):
                isl = island(algo, prob, number_of_individuals)
                isl.evolve(1)
                isl.join()
                best.append(isl.population.champion.f)
                best_x.append(isl.population.champion.x)
            print(' Best:\t' + str(min(best)[0]))
            print(' Mean:\t' + str(mean(best)))
            print(' Std:\t' + str(std(best)))
Example #5
0
def run_test(n_trials=200, pop_size=20, n_gen=500):
    """
    This function runs some tests on the algorthm. Use it to verify the correct installation
    of PyGMO.

    USAGE: PyGMO.run_test(n_trials=200, pop_size = 20, n_gen = 500)

    * n_trials: each algorithm will be called n_trials times on the same problem to then evaluate best, mean and std
    * pop_size: this determines the population size
    * n_gen: this regulates the maximim number of function evaluation

    """
    from PyGMO import problem, algorithm, island
    from numpy import mean, std
    number_of_trials = n_trials
    number_of_individuals = pop_size
    number_of_generations = n_gen

    prob_list = [
        problem.schwefel(
            dim=10), problem.rastrigin(
            dim=10), problem.rosenbrock(
            dim=10), problem.ackley(
            dim=10), problem.griewank(
            dim=10), problem.levy5(10)]
    if __extensions__['gtop']:
        prob_list.append(problem.cassini_1())
        prob_list.append(problem.gtoc_1())
        prob_list.append(problem.cassini_2())
        prob_list.append(problem.messenger_full())

    algo_list = [
        algorithm.pso(
            gen=number_of_generations),
        algorithm.mde_pbx(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.de(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.jde(
            gen=number_of_generations,
            memory=False,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.de_1220(
            gen=number_of_generations,
            memory=False,
            xtol=1e-30,
            ftol=1e-30),
        algorithm.sa_corana(
            iter=number_of_generations *
            number_of_individuals,
            Ts=1,
            Tf=0.01),
        algorithm.ihs(
            iter=number_of_generations *
            number_of_individuals),
        algorithm.sga(
            gen=number_of_generations),
        algorithm.cmaes(
            gen=number_of_generations,
            xtol=1e-30,
            ftol=1e-30,
            memory=False),
        algorithm.bee_colony(
            gen=number_of_generations /
            2)]
    print('\nTrials: ' + str(n_trials) + ' - Population size: ' +
          str(pop_size) + ' - Generations: ' + str(n_gen))
    for prob in prob_list:
        print('\nTesting problem: ' + prob.get_name() +
              ', Dimension: ' + str(prob.dimension))
        print('With Population Size: ' + str(pop_size))
        for algo in algo_list:
            print(' ' + str(algo))
            best = []
            best_x = []
            for i in range(0, number_of_trials):
                isl = island(algo, prob, number_of_individuals)
                isl.evolve(1)
                isl.join()
                best.append(isl.population.champion.f)
                best_x.append(isl.population.champion.x)
            print(' Best:\t' + str(min(best)[0]))
            print(' Mean:\t' + str(mean(best)))
            print(' Std:\t' + str(std(best)))