Example #1
0
    def get_SoR(self, T, P=c.P0('bar')):
        """Calculates the dimensionless entropy

        :math:`\\frac{S^{trans}}{R}=1+\\frac{n_{degrees}}{2}+\\log\\bigg(\\big(
        \\frac{2\\pi mk_bT}{h^2})^\\frac{n_{degrees}}{2}\\frac{RT}{PN_a}\\bigg)`

        Parameters
        ----------
            T : float
                Temperature in K
            P : float, optional
                Pressure (bar) or pressure-like quantity.
                Default is atmospheric pressure

        Returns
        -------
            SoR_trans : float
                Translational dimensionless entropy
        """
        V = self.get_V(T=T, P=P)
        unit_mass = self.molecular_weight *\
            c.convert_unit(from_='g', to='kg')/c.Na
        return 1. + float(self.n_degrees)/2. \
            + np.log((2.*np.pi*unit_mass*c.kb('J/K')*T/c.h('J s')**2)
                     ** (float(self.n_degrees)/2.)*V/c.Na)
Example #2
0
    def get_Vm(self, T=c.T0('K'), P=c.P0('bar'), gas_phase=True):
        """Calculates the molar volume of a van der Waals gas

        Parameters
        ----------
            T : float, optional
                Temperature in K. Default is standard temperature
            P : float, optional
                Pressure in bar. Default is standard pressure
            gas_phase : bool, optional
                Relevant if system is in vapor-liquid equilibrium. If True, 
                return the larger volume (gas phase). If False, returns the 
                smaller volume (liquid phase).
        Returns
        -------
            Vm : float
                Volume in m3
        """
        P_SI = P * c.convert_unit(from_='bar', to='Pa')
        Vm = np.roots([
            P_SI, -(P_SI * self.b + c.R('J/mol/K') * T), self.a,
            -self.a * self.b
        ])
        real_Vm = np.real([Vm_i for Vm_i in Vm if np.isreal(Vm_i)])
        if gas_phase:
            return np.max(real_Vm)
        else:
            return np.min(real_Vm)
Example #3
0
    def get_n(self, V=c.V0('m3'), P=c.P0('bar'), T=c.T0('K')):
        """Calculates the volume of an ideal gas

        Parameters
        ----------
            V : float, optional
                Volume in m3. Default is standard volume
            P : float, optional
                Pressure in bar. Default is standard pressure
            T : float, optional
                Temperature in K. Default is standard temperature
        Returns
        -------
            n : float
                Number of moles in mol
        """
        return P * V / c.R('m3 bar/mol/K') / T
Example #4
0
    def get_T(self, V=c.V0('m3'), P=c.P0('bar'), n=1.):
        """Calculates the volume of an ideal gas

        Parameters
        ----------
            V : float, optional
                Volume in m3. Default is standard volume
            P : float, optional
                Pressure in bar. Default is standard pressure
            n : float, optional
                Number of moles (in mol). Default is 1 mol
        Returns
        -------
            T : float
                Temperature in K
        """
        return P * V / c.R('m3 bar/mol/K') / n
Example #5
0
    def get_V(self, T=c.T0('K'), P=c.P0('bar'), n=1.):
        """Calculates the volume of an ideal gas

        Parameters
        ----------
            T : float, optional
                Temperature in K. Default is standard temperature
            P : float, optional
                Pressure in bar. Default is standard pressure
            n : float, optional
                Number of moles (in mol). Default is 1 mol
        Returns
        -------
            V : float
                Volume in m3
        """
        return n * c.R('m3 bar/mol/K') * T / P
Example #6
0
    def get_GoRT(self, T, P=c.P0('bar')):
        """Calculates the dimensionless Gibbs energy

        :math:`\\frac{G^{trans}}{RT}=\\frac{H^{trans}}{RT}-\\frac{S^{trans}}{R}`       

        Parameters
        ----------
            T : float
                Temperature in K
            P : float, optional
                Pressure (bar) or pressure-like quantity.
                Default is atmospheric pressure
        Returns
        -------
            GoR_trans : float
                Translational dimensionless Gibbs energy
        """
        return self.get_HoRT() - self.get_SoR(T=T, P=P)
    def setUp(self):
        unittest.TestCase.setUp(self)
        # Testing Ideal Gas Model
        CO2 = molecule('CO2')
        CO2_PyMuTT_parameters = {
            'trans_model':
            trans.IdealTrans,
            'n_degrees':
            3,
            'molecular_weight':
            get_molecular_weight('CO2'),
            'rot_model':
            rot.RigidRotor,
            'rot_temperatures':
            rot.get_rot_temperatures_from_atoms(CO2, geometry='linear'),
            'geometry':
            'linear',
            'symmetrynumber':
            2,
            'elec_model':
            elec.IdealElec,
            'potentialenergy':
            -22.994202,
            'spin':
            0.,
            'vib_model':
            vib.HarmonicVib,
            'vib_wavenumbers': [3360., 954., 954., 1890.],
        }
        CO2_ase_parameters = {
            'atoms': CO2,
            'potentialenergy': -22.994202,
            'vib_energies': [c.wavenumber_to_energy(x) \
                for x in CO2_PyMuTT_parameters['vib_wavenumbers']],
            'geometry':'linear',
            'symmetrynumber': 2,
            'spin': 0.
        }
        self.CO2_PyMuTT = StatMech(**CO2_PyMuTT_parameters)
        self.CO2_ASE = IdealGasThermo(**CO2_ase_parameters)

        self.T0 = c.T0('K')  # K
        self.P0 = c.P0('Pa')
        self.V0 = c.V0('m3')
Example #8
0
    def get_T(self, V=c.V0('m3'), P=c.P0('bar'), n=1.):
        """Calculates the volume of a van der Waals gas

        Parameters
        ----------
            V : float, optional
                Volume in m3. Default is standard volume
            P : float, optional
                Pressure in bar. Default is standard pressure
            n : float, optional
                Number of moles (in mol). Default is 1 mol
        Returns
        -------
            T : float
                Temperature in K
        """
        Vm = V / n
        return (P*c.convert_unit(from_='bar', to='Pa') + self.a/Vm**2) \
               *(Vm - self.b)/c.R('J/mol/K')
Example #9
0
    def get_n(self, V=c.V0('m3'), P=c.P0('bar'), T=c.T0('K'), gas_phase=True):
        """Calculates the volume of a van der Waals gas

        Parameters
        ----------
            V : float, optional
                Volume in m3. Default is standard volume
            P : float, optional
                Pressure in bar. Default is standard pressure
            T : float, optional
                Temperature in K. Default is standard temperature
            gas_phase : bool, optional
                Relevant if system is in vapor-liquid equilibrium. If True, 
                return the smaller moles (gas phase). If False, returns the 
                larger moles (liquid phase).
        Returns
        -------
            n : float
                Number of moles in mol
        """
        return V / self.get_Vm(T=T, P=P, gas_phase=gas_phase)
Example #10
0
    def get_V(self, T=c.T0('K'), P=c.P0('bar'), n=1., gas_phase=True):
        """Calculates the volume of a van der Waals gas

        Parameters
        ----------
            T : float, optional
                Temperature in K. Default is standard temperature
            P : float, optional
                Pressure in bar. Default is standard pressure
            n : float, optional
                Number of moles (in mol). Default is 1 mol
            gas_phase : bool, optional
                Relevant if system is in vapor-liquid equilibrium. If True, 
                return the larger volume (gas phase). If False, returns the 
                smaller volume (liquid phase).
        Returns
        -------
            V : float
                Volume in m3
        """
        return self.get_Vm(T=T, P=P, gas_phase=gas_phase) * n
Example #11
0
    def get_q(self, T, P=c.P0('bar')):
        """Calculates the partition function

        :math:`q_{trans} = \\bigg(\\frac{2\\pi \\sum_{i}^{atoms}m_ikT}{h^2}
        \\bigg)^\\frac {n_{degrees}} {2}V`

        Parameters
        ----------
            T : float
                Temperature in K
            P : float, optional
                Pressure (bar) or pressure-like quantity.
                Default is atmospheric pressure
        Returns
        -------
            q_trans : float
                Translational partition function
        """
        V = self.get_V(T=T, P=P)
        unit_mass = self.molecular_weight *\
            c.convert_unit(from_='g', to='kg')/c.Na
        return V*(2*np.pi*c.kb('J/K')*T*unit_mass/c.h('J s')**2) \
            ** (float(self.n_degrees)/2.)
Example #12
0
 def test_get_n(self):
     self.assertAlmostEqual(
         self.ideal_gas.get_n(T=c.T0('K'), V=c.V0('m3'), P=c.P0('bar')), 1.)
Example #13
0
 def test_get_P(self):
     self.assertAlmostEqual(
         self.ideal_gas.get_P(T=c.T0('K'), V=c.V0('m3'), n=1.), c.P0('bar'))
Example #14
0
 def test_P0(self):
     self.assertEqual(c.P0('atm'), 1.)
     with self.assertRaises(KeyError):
         c.P0('arbitrary unit')