Example #1
0
        pgncc = networkx.number_connected_components(pgu)
        print 'number_connected_components: %s' % (pgncc)

        ped_deg = pyp_network.get_node_degrees(pg)
        ped_hist = pyp_network.get_node_degree_histograms(ped_deg)
        print 'ped_hist:\t'
        for k, v in ped_hist.iteritems():
            print '\t\t', k, '\t', v

        print 'nodes:\t\t', pg.order()
        print 'edges:\t\t', pg.size()
        density = pyp_network.graph_density(pg)
        print 'density:\t', density

        census = pyp_network.dyad_census(pg)
        print 'max dyads:\t', ((pg.order() * (pg.order() - 1)) / 2)
        print 'census:\t\t', census

        geodesic = pyp_network.mean_geodesic(pg)
        print 'geodesic:\t', geodesic

        centrality = pyp_network.mean_degree_centrality(pg)
        print 'centrality:\t', centrality

        centrality = pyp_network.mean_degree_centrality(pg, normalize=1)
        print 'normed central:\t', centrality

        close = pyp_network.get_closeness_centrality(pg)
        mean_close = pyp_network.mean_value(close)
        print 'mean closeness:\t', mean_close
Example #2
0
        pgncc = networkx.number_connected_components(pgu)
        print 'number_connected_components: %s' % ( pgncc )

        ped_deg = pyp_network.get_node_degrees(pg)
        ped_hist = pyp_network.get_node_degree_histograms(ped_deg)
        print 'ped_hist:\t'
        for k,v in ped_hist.iteritems():
            print '\t\t', k, '\t', v

        print 'nodes:\t\t', pg.order()
        print 'edges:\t\t', pg.size()
        density = pyp_network.graph_density(pg)
        print 'density:\t', density

        census = pyp_network.dyad_census(pg)
        print 'max dyads:\t', ( ( pg.order()*(pg.order()-1) ) / 2 )
        print 'census:\t\t', census

        geodesic = pyp_network.mean_geodesic(pg)
        print 'geodesic:\t', geodesic

        centrality = pyp_network.mean_degree_centrality(pg)
        print 'centrality:\t', centrality

        centrality = pyp_network.mean_degree_centrality(pg,normalize=1)
        print 'normed central:\t', centrality

        close = pyp_network.get_closeness_centrality(pg)
        mean_close = pyp_network.mean_value(close)
        print 'mean closeness:\t', mean_close
Example #3
0
    #coi_by_year

    #print ib
    #for _e in example.pedigree:
    #print _e.name, _e.fa

    print example.kw['paper_size']

    #print example.backmap
    ## Use with new_renumbering.ped.
    #pyp_reports.pdf3GenPed([56,72], example)
    ## Use with horse.ped.
    #pyp_reports.pdf3GenPed(["Pie's Joseph","Green's Dingo"], example)
    #pyp_reports.pdf3GenPed("Green's Dingo", example,reportfile='greens_dingo_pedigree.pdf')
    #pyp_reports.pdf3GenPed(example.namemap.keys(), example)

    pyp_graphics.draw_pedigree(example, gfilename='greens_dingo_pedigree', \
  gtitle="Green's Dingo pedigree", gname=1, gformat='ps', garrow=1)

    #matings = {}
    #for s in example.metadata.unique_sire_list:
    #    for d in example.metadata.unique_dam_list:
    #        matings[example.pedigree[s-1].name] = example.pedigree[d-1].name
    #pyp_metrics.mating_coi_group(matings,example,names=1)

    pg = pyp_network.ped_to_graph(example)
    #print pg, pg.degree(), pg.nodes()
    census = pyp_network.dyad_census(pg, debug=1)
    print 'max dyads:\t', ((pg.order() * (pg.order() - 1)) / 2)
    print 'census:\t\t', census
Example #4
0
    #coi_by_year

    #print ib
    #for _e in example.pedigree:
        #print _e.name, _e.fa

    print example.kw['paper_size']

    #print example.backmap
    ## Use with new_renumbering.ped.
    #pyp_reports.pdf3GenPed([56,72], example)
    ## Use with horse.ped.
    #pyp_reports.pdf3GenPed(["Pie's Joseph","Green's Dingo"], example)
    #pyp_reports.pdf3GenPed("Green's Dingo", example,reportfile='greens_dingo_pedigree.pdf')
    #pyp_reports.pdf3GenPed(example.namemap.keys(), example)

    pyp_graphics.draw_pedigree(example, gfilename='greens_dingo_pedigree', \
		gtitle="Green's Dingo pedigree", gname=1, gformat='ps', garrow=1)

    #matings = {}
    #for s in example.metadata.unique_sire_list:
    #    for d in example.metadata.unique_dam_list:
    #        matings[example.pedigree[s-1].name] = example.pedigree[d-1].name
    #pyp_metrics.mating_coi_group(matings,example,names=1)

    pg = pyp_network.ped_to_graph(example)
    #print pg, pg.degree(), pg.nodes()
    census = pyp_network.dyad_census(pg,debug=1)
    print 'max dyads:\t', ( ( pg.order()*(pg.order()-1) ) / 2 )
    print 'census:\t\t', census