Example #1
0
def add_transparency(qimage: QImage) -> QImage:
    """
    Add transparent window borders according to Ubuntu 19.10 titlebar style
    :param qimage: image with non transparent top left and right corners
    :return: image with transparent top left and right corners
    """

    if not qimage.hasAlphaChannel():
        assert qimage.format() == QImage.Format_RGB32
        transparent = QImage(qimage.size(), QImage.Format_ARGB32_Premultiplied)
        transparent.fill(Qt.black)
        painter = QPainter()
        painter.begin(transparent)
        painter.drawImage(0, 0, qimage)
        painter.end()
        qimage = transparent

    image_width = qimage.width()
    y = -1
    for width in (5, 3, 2, 1):
        y += 1
        for x in range(width):
            color = qimage.pixelColor(x, y)
            color.setAlpha(0)
            qimage.setPixelColor(x, y, color)
            qimage.setPixelColor(image_width - x - 1, y, color)

    return qimage
Example #2
0
    def _convert_image(self, qimage: QImage) -> Optional[QDBusArgument]:
        """Convert a QImage to the structure DBus expects.

        https://specifications.freedesktop.org/notification-spec/latest/ar01s05.html#icons-and-images-formats
        """
        bits_per_color = 8
        has_alpha = qimage.hasAlphaChannel()
        if has_alpha:
            image_format = QImage.Format_RGBA8888
            channel_count = 4
        else:
            image_format = QImage.Format_RGB888
            channel_count = 3

        qimage.convertTo(image_format)
        bytes_per_line = qimage.bytesPerLine()
        width = qimage.width()
        height = qimage.height()

        image_data = QDBusArgument()
        image_data.beginStructure()
        image_data.add(width)
        image_data.add(height)
        image_data.add(bytes_per_line)
        image_data.add(has_alpha)
        image_data.add(bits_per_color)
        image_data.add(channel_count)

        try:
            size = qimage.sizeInBytes()
        except TypeError:
            # WORKAROUND for
            # https://www.riverbankcomputing.com/pipermail/pyqt/2020-May/042919.html
            # byteCount() is obsolete, but sizeInBytes() is only available with
            # SIP >= 5.3.0.
            size = qimage.byteCount()

        # Despite the spec not mandating this, many notification daemons mandate that
        # the last scanline does not have any padding bytes.
        #
        # Or in the words of dunst:
        #
        #     The image is serialised rowwise pixel by pixel. The rows are aligned by a
        #     spacer full of garbage. The overall data length of data + garbage is
        #     called the rowstride.
        #
        #     Mind the missing spacer at the last row.
        #
        #     len:     |<--------------rowstride---------------->|
        #     len:     |<-width*pixelstride->|
        #     row 1:   |   data for row 1    | spacer of garbage |
        #     row 2:   |   data for row 2    | spacer of garbage |
        #              |         .           | spacer of garbage |
        #              |         .           | spacer of garbage |
        #              |         .           | spacer of garbage |
        #     row n-1: |   data for row n-1  | spacer of garbage |
        #     row n:   |   data for row n    |
        #
        # Source:
        # https://github.com/dunst-project/dunst/blob/v1.6.1/src/icon.c#L292-L309
        padding = bytes_per_line - width * channel_count
        assert 0 <= padding <= 3, (padding, bytes_per_line, width,
                                   channel_count)
        size -= padding

        if padding and self._quirks.no_padded_images:
            return None

        bits = qimage.constBits().asstring(size)
        image_data.add(QByteArray(bits))

        image_data.endStructure()
        return image_data
Example #3
0
    def _generateSceneNode(self, file_name, xz_size, peak_height, base_height,
                           blur_iterations, max_size, lighter_is_higher,
                           use_transparency_model, transmittance_1mm):
        scene_node = SceneNode()

        mesh = MeshBuilder()

        img = QImage(file_name)

        if img.isNull():
            Logger.log("e", "Image is corrupt.")
            return None

        width = max(img.width(), 2)
        height = max(img.height(), 2)
        aspect = height / width

        if img.width() < 2 or img.height() < 2:
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        base_height = max(base_height, 0)
        peak_height = max(peak_height, -base_height)

        xz_size = max(xz_size, 1)
        scale_vector = Vector(xz_size, peak_height, xz_size)

        if width > height:
            scale_vector = scale_vector.set(z=scale_vector.z * aspect)
        elif height > width:
            scale_vector = scale_vector.set(x=scale_vector.x / aspect)

        if width > max_size or height > max_size:
            scale_factor = max_size / width
            if height > width:
                scale_factor = max_size / height

            width = int(max(round(width * scale_factor), 2))
            height = int(max(round(height * scale_factor), 2))
            img = img.scaled(width, height, Qt.IgnoreAspectRatio)

        width_minus_one = width - 1
        height_minus_one = height - 1

        Job.yieldThread()

        texel_width = 1.0 / (width_minus_one) * scale_vector.x
        texel_height = 1.0 / (height_minus_one) * scale_vector.z

        height_data = numpy.zeros((height, width), dtype=numpy.float32)

        for x in range(0, width):
            for y in range(0, height):
                qrgb = img.pixel(x, y)
                if use_transparency_model:
                    height_data[y, x] = (
                        0.299 * math.pow(qRed(qrgb) / 255.0, 2.2) +
                        0.587 * math.pow(qGreen(qrgb) / 255.0, 2.2) +
                        0.114 * math.pow(qBlue(qrgb) / 255.0, 2.2))
                else:
                    height_data[y, x] = (
                        0.212655 * qRed(qrgb) + 0.715158 * qGreen(qrgb) +
                        0.072187 * qBlue(qrgb)
                    ) / 255  # fast computation ignoring gamma and degamma

        Job.yieldThread()

        if lighter_is_higher == use_transparency_model:
            height_data = 1 - height_data

        for _ in range(0, blur_iterations):
            copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode="edge")

            height_data += copy[1:-1, 2:]
            height_data += copy[1:-1, :-2]
            height_data += copy[2:, 1:-1]
            height_data += copy[:-2, 1:-1]

            height_data += copy[2:, 2:]
            height_data += copy[:-2, 2:]
            height_data += copy[2:, :-2]
            height_data += copy[:-2, :-2]

            height_data /= 9

            Job.yieldThread()

        if use_transparency_model:
            divisor = 1.0 / math.log(
                transmittance_1mm / 100.0
            )  # log-base doesn't matter here. Precompute this value for faster computation of each pixel.
            min_luminance = (transmittance_1mm / 100.0)**(peak_height -
                                                          base_height)
            for (y, x) in numpy.ndindex(height_data.shape):
                mapped_luminance = min_luminance + (
                    1.0 - min_luminance) * height_data[y, x]
                height_data[y, x] = base_height + divisor * math.log(
                    mapped_luminance
                )  # use same base as a couple lines above this
        else:
            height_data *= scale_vector.y
            height_data += base_height

        if img.hasAlphaChannel():
            for x in range(0, width):
                for y in range(0, height):
                    height_data[y, x] *= qAlpha(img.pixel(x, y)) / 255.0

        heightmap_face_count = 2 * height_minus_one * width_minus_one
        total_face_count = heightmap_face_count + (width_minus_one * 2) * (
            height_minus_one * 2) + 2

        mesh.reserveFaceCount(total_face_count)

        # initialize to texel space vertex offsets.
        # 6 is for 6 vertices for each texel quad.
        heightmap_vertices = numpy.zeros(
            (width_minus_one * height_minus_one, 6, 3), dtype=numpy.float32)
        heightmap_vertices = heightmap_vertices + numpy.array(
            [[[0, base_height, 0], [0, base_height, texel_height],
              [texel_width, base_height, texel_height],
              [texel_width, base_height, texel_height],
              [texel_width, base_height, 0], [0, base_height, 0]]],
            dtype=numpy.float32)

        offsetsz, offsetsx = numpy.mgrid[0:height_minus_one, 0:width - 1]
        offsetsx = numpy.array(offsetsx, numpy.float32).reshape(
            -1, 1) * texel_width
        offsetsz = numpy.array(offsetsz, numpy.float32).reshape(
            -1, 1) * texel_height

        # offsets for each texel quad
        heightmap_vertex_offsets = numpy.concatenate([
            offsetsx,
            numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]),
                        dtype=numpy.float32), offsetsz
        ], 1)
        heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(
            -1, 6, 3)

        # apply height data to y values
        heightmap_vertices[:, 0,
                           1] = heightmap_vertices[:, 5,
                                                   1] = height_data[:-1, :
                                                                    -1].reshape(
                                                                        -1)
        heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1)
        heightmap_vertices[:, 2,
                           1] = heightmap_vertices[:, 3, 1] = height_data[
                               1:, 1:].reshape(-1)
        heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1)

        heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count *
                                                    3],
                                        dtype=numpy.int32).reshape(-1, 3)

        mesh._vertices[0:(heightmap_vertices.size //
                          3), :] = heightmap_vertices.reshape(-1, 3)
        mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices

        mesh._vertex_count = heightmap_vertices.size // 3
        mesh._face_count = heightmap_indices.size // 3

        geo_width = width_minus_one * texel_width
        geo_height = height_minus_one * texel_height

        # bottom
        mesh.addFaceByPoints(0, 0, 0, 0, 0, geo_height, geo_width, 0,
                             geo_height)
        mesh.addFaceByPoints(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0,
                             0)

        # north and south walls
        for n in range(0, width_minus_one):
            x = n * texel_width
            nx = (n + 1) * texel_width

            hn0 = height_data[0, n]
            hn1 = height_data[0, n + 1]

            hs0 = height_data[height_minus_one, n]
            hs1 = height_data[height_minus_one, n + 1]

            mesh.addFaceByPoints(x, 0, 0, nx, 0, 0, nx, hn1, 0)
            mesh.addFaceByPoints(nx, hn1, 0, x, hn0, 0, x, 0, 0)

            mesh.addFaceByPoints(x, 0, geo_height, nx, 0, geo_height, nx, hs1,
                                 geo_height)
            mesh.addFaceByPoints(nx, hs1, geo_height, x, hs0, geo_height, x, 0,
                                 geo_height)

        # west and east walls
        for n in range(0, height_minus_one):
            y = n * texel_height
            ny = (n + 1) * texel_height

            hw0 = height_data[n, 0]
            hw1 = height_data[n + 1, 0]

            he0 = height_data[n, width_minus_one]
            he1 = height_data[n + 1, width_minus_one]

            mesh.addFaceByPoints(0, 0, y, 0, 0, ny, 0, hw1, ny)
            mesh.addFaceByPoints(0, hw1, ny, 0, hw0, y, 0, 0, y)

            mesh.addFaceByPoints(geo_width, 0, y, geo_width, 0, ny, geo_width,
                                 he1, ny)
            mesh.addFaceByPoints(geo_width, he1, ny, geo_width, he0, y,
                                 geo_width, 0, y)

        mesh.calculateNormals(fast=True)

        scene_node.setMeshData(mesh.build())

        return scene_node