def get_exx_energy(b,nbf,nel,nocc,ETemp,Enuke,S,h,Ints,H0,Gij,**opts): """Computes the energy for the OEP/HF functional Options: return_flag 0 Just return the energy 1 Return energy, orbe, orbs 2 Return energy, orbe, orbs, F """ return_flag = opts.get('return_flag',0) Hoep = get_Hoep(b,H0,Gij) orbe,orbs = geigh(Hoep,S) if ETemp: efermi = get_efermi(nel,orbe,ETemp) occs = get_fermi_occs(efermi,orbe,ETemp) D = mkdens_occs(orbs,occs) entropy = get_entropy(occs,ETemp) else: D = mkdens(orbs,0,nocc) F = get_fock(D,Ints,h) energy = trace2(h+F,D)+Enuke if ETemp: energy += entropy iref = nel/2 gap = 627.51*(orbe[iref]-orbe[iref-1]) logging.debug("EXX Energy, B, Gap: %10.5f %10.5f %10.5f" % (energy,sqrt(dot(b,b)),gap)) #logging.debug("%s" % orbe) if return_flag == 1: return energy,orbe,orbs elif return_flag == 2: return energy,orbe,orbs,F return energy
def get_exx_energy(b, nbf, nel, nocc, ETemp, Enuke, S, h, Ints, H0, Gij, **opts): """Computes the energy for the OEP/HF functional Options: return_flag 0 Just return the energy 1 Return energy, orbe, orbs 2 Return energy, orbe, orbs, F """ return_flag = opts.get('return_flag', 0) Hoep = get_Hoep(b, H0, Gij) orbe, orbs = geigh(Hoep, S) if ETemp: efermi = get_efermi(nel, orbe, ETemp) occs = get_fermi_occs(efermi, orbe, ETemp) D = mkdens_occs(orbs, occs) entropy = get_entropy(occs, ETemp) else: D = mkdens(orbs, 0, nocc) F = get_fock(D, Ints, h) energy = trace2(h + F, D) + Enuke if ETemp: energy += entropy iref = nel / 2 gap = 627.51 * (orbe[iref] - orbe[iref - 1]) logging.debug("EXX Energy, B, Gap: %10.5f %10.5f %10.5f" % (energy, sqrt(dot(b, b)), gap)) #logging.debug("%s" % orbe) if return_flag == 1: return energy, orbe, orbs elif return_flag == 2: return energy, orbe, orbs, F return energy
def oep_uhf_an(atoms,orbsa,orbsb,**opts): """oep_hf - Form the optimized effective potential for HF exchange. Implementation of Wu and Yang's Approximate Newton Scheme from J. Theor. Comp. Chem. 2, 627 (2003). oep_uhf(atoms,orbs,**opts) atoms A Molecule object containing a list of the atoms orbs A matrix of guess orbitals Options ------- bfs None The basis functions to use for the wfn pbfs None The basis functions to use for the pot basis_data None The basis data to use to construct bfs integrals None The one- and two-electron integrals to use If not None, S,h,Ints """ maxiter = opts.get('maxiter',100) tol = opts.get('tol',1e-5) ETemp = opts.get('ETemp',False) bfs = opts.get('bfs',None) if not bfs: basis = opts.get('basis',None) bfs = getbasis(atoms,basis) # The basis set for the potential can be set different from # that used for the wave function pbfs = opts.get('pbfs',None) if not pbfs: pbfs = bfs npbf = len(pbfs) integrals = opts.get('integrals',None) if integrals: S,h,Ints = integrals else: S,h,Ints = getints(bfs,atoms) nel = atoms.get_nel() nclosed,nopen = atoms.get_closedopen() nalpha,nbeta = nclosed+nopen,nclosed Enuke = atoms.get_enuke() # Form the OEP using Yang/Wu, PRL 89 143002 (2002) nbf = len(bfs) norb = nbf ba = zeros(npbf,'d') bb = zeros(npbf,'d') # Form and store all of the three-center integrals # we're going to need. # These are <ibf|gbf|jbf> (where 'bf' indicates basis func, # as opposed to MO) # N^3 storage -- obviously you don't want to do this for # very large systems Gij = [] for g in range(npbf): gmat = zeros((nbf,nbf),'d') Gij.append(gmat) gbf = pbfs[g] for i in range(nbf): ibf = bfs[i] for j in range(i+1): jbf = bfs[j] gij = three_center(ibf,gbf,jbf) gmat[i,j] = gij gmat[j,i] = gij # Compute the Fermi-Amaldi potential based on the LDA density. # We're going to form this matrix from the Coulombic matrix that # arises from the input orbitals. D0 and J0 refer to the density # matrix and corresponding Coulomb matrix D0 = mkdens(orbsa,0,nalpha)+mkdens(orbsb,0,nbeta) J0 = getJ(Ints,D0) Vfa = ((nel-1.)/nel)*J0 H0 = h + Vfa eold = 0 for iter in range(maxiter): Hoepa = get_Hoep(ba,H0,Gij) Hoepb = get_Hoep(ba,H0,Gij) orbea,orbsa = geigh(Hoepa,S) orbeb,orbsb = geigh(Hoepb,S) if ETemp: efermia = get_efermi(2*nalpha,orbea,ETemp) occsa = get_fermi_occs(efermia,orbea,ETemp) Da = mkdens_occs(orbsa,occsa) efermib = get_efermi(2*nbeta,orbeb,ETemp) occsb = get_fermi_occs(efermib,orbeb,ETemp) Db = mkdens_occs(orbsb,occsb) entropy = 0.5*(get_entropy(occsa,ETemp)+get_entropy(occsb,ETemp)) else: Da = mkdens(orbsa,0,nalpha) Db = mkdens(orbsb,0,nbeta) J = getJ(Ints,Da) + getJ(Ints,Db) Ka = getK(Ints,Da) Kb = getK(Ints,Db) energy = (trace2(2*h+J-Ka,Da)+trace2(2*h+J-Kb,Db))/2\ +Enuke if ETemp: energy += entropy if abs(energy-eold) < tol: break else: eold = energy logging.debug("OEP AN Opt: %d %f" % (iter,energy)) # Do alpha and beta separately # Alphas dV_ao = J-Ka-Vfa dV = matrixmultiply(orbsa,matrixmultiply(dV_ao,transpose(orbsa))) X = zeros((nbf,nbf),'d') c = zeros(nbf,'d') for k in range(nbf): Gk = matrixmultiply(orbsa,matrixmultiply(Gij[k], transpose(orbsa))) for i in range(nalpha): for a in range(nalpha,norb): c[k] += dV[i,a]*Gk[i,a]/(orbea[i]-orbea[a]) for l in range(nbf): Gl = matrixmultiply(orbsa,matrixmultiply(Gij[l], transpose(orbsa))) for i in range(nalpha): for a in range(nalpha,norb): X[k,l] += Gk[i,a]*Gl[i,a]/(orbea[i]-orbea[a]) # This should actually be a pseudoinverse... ba = solve(X,c) # Betas dV_ao = J-Kb-Vfa dV = matrixmultiply(orbsb,matrixmultiply(dV_ao,transpose(orbsb))) X = zeros((nbf,nbf),'d') c = zeros(nbf,'d') for k in range(nbf): Gk = matrixmultiply(orbsb,matrixmultiply(Gij[k], transpose(orbsb))) for i in range(nbeta): for a in range(nbeta,norb): c[k] += dV[i,a]*Gk[i,a]/(orbeb[i]-orbeb[a]) for l in range(nbf): Gl = matrixmultiply(orbsb,matrixmultiply(Gij[l], transpose(orbsb))) for i in range(nbeta): for a in range(nbeta,norb): X[k,l] += Gk[i,a]*Gl[i,a]/(orbeb[i]-orbeb[a]) # This should actually be a pseudoinverse... bb = solve(X,c) logging.info("Final OEP energy = %f" % energy) return energy,(orbea,orbeb),(orbsa,orbsb)
def oep_uhf_an(atoms, orbsa, orbsb, **opts): """oep_hf - Form the optimized effective potential for HF exchange. Implementation of Wu and Yang's Approximate Newton Scheme from J. Theor. Comp. Chem. 2, 627 (2003). oep_uhf(atoms,orbs,**opts) atoms A Molecule object containing a list of the atoms orbs A matrix of guess orbitals Options ------- bfs None The basis functions to use for the wfn pbfs None The basis functions to use for the pot basis_data None The basis data to use to construct bfs integrals None The one- and two-electron integrals to use If not None, S,h,Ints """ maxiter = opts.get('maxiter', 100) tol = opts.get('tol', 1e-5) ETemp = opts.get('ETemp', False) bfs = opts.get('bfs', None) if not bfs: basis = opts.get('basis', None) bfs = getbasis(atoms, basis) # The basis set for the potential can be set different from # that used for the wave function pbfs = opts.get('pbfs', None) if not pbfs: pbfs = bfs npbf = len(pbfs) integrals = opts.get('integrals', None) if integrals: S, h, Ints = integrals else: S, h, Ints = getints(bfs, atoms) nel = atoms.get_nel() nclosed, nopen = atoms.get_closedopen() nalpha, nbeta = nclosed + nopen, nclosed Enuke = atoms.get_enuke() # Form the OEP using Yang/Wu, PRL 89 143002 (2002) nbf = len(bfs) norb = nbf ba = zeros(npbf, 'd') bb = zeros(npbf, 'd') # Form and store all of the three-center integrals # we're going to need. # These are <ibf|gbf|jbf> (where 'bf' indicates basis func, # as opposed to MO) # N^3 storage -- obviously you don't want to do this for # very large systems Gij = [] for g in xrange(npbf): gmat = zeros((nbf, nbf), 'd') Gij.append(gmat) gbf = pbfs[g] for i in xrange(nbf): ibf = bfs[i] for j in xrange(i + 1): jbf = bfs[j] gij = three_center(ibf, gbf, jbf) gmat[i, j] = gij gmat[j, i] = gij # Compute the Fermi-Amaldi potential based on the LDA density. # We're going to form this matrix from the Coulombic matrix that # arises from the input orbitals. D0 and J0 refer to the density # matrix and corresponding Coulomb matrix D0 = mkdens(orbsa, 0, nalpha) + mkdens(orbsb, 0, nbeta) J0 = getJ(Ints, D0) Vfa = ((nel - 1.) / nel) * J0 H0 = h + Vfa eold = 0 for iter in xrange(maxiter): Hoepa = get_Hoep(ba, H0, Gij) Hoepb = get_Hoep(ba, H0, Gij) orbea, orbsa = geigh(Hoepa, S) orbeb, orbsb = geigh(Hoepb, S) if ETemp: efermia = get_efermi(2 * nalpha, orbea, ETemp) occsa = get_fermi_occs(efermia, orbea, ETemp) Da = mkdens_occs(orbsa, occsa) efermib = get_efermi(2 * nbeta, orbeb, ETemp) occsb = get_fermi_occs(efermib, orbeb, ETemp) Db = mkdens_occs(orbsb, occsb) entropy = 0.5 * (get_entropy(occsa, ETemp) + get_entropy(occsb, ETemp)) else: Da = mkdens(orbsa, 0, nalpha) Db = mkdens(orbsb, 0, nbeta) J = getJ(Ints, Da) + getJ(Ints, Db) Ka = getK(Ints, Da) Kb = getK(Ints, Db) energy = (trace2(2*h+J-Ka,Da)+trace2(2*h+J-Kb,Db))/2\ +Enuke if ETemp: energy += entropy if abs(energy - eold) < tol: break else: eold = energy logging.debug("OEP AN Opt: %d %f" % (iter, energy)) # Do alpha and beta separately # Alphas dV_ao = J - Ka - Vfa dV = matrixmultiply(orbsa, matrixmultiply(dV_ao, transpose(orbsa))) X = zeros((nbf, nbf), 'd') c = zeros(nbf, 'd') for k in xrange(nbf): Gk = matrixmultiply(orbsa, matrixmultiply(Gij[k], transpose(orbsa))) for i in xrange(nalpha): for a in xrange(nalpha, norb): c[k] += dV[i, a] * Gk[i, a] / (orbea[i] - orbea[a]) for l in xrange(nbf): Gl = matrixmultiply(orbsa, matrixmultiply(Gij[l], transpose(orbsa))) for i in xrange(nalpha): for a in xrange(nalpha, norb): X[k, l] += Gk[i, a] * Gl[i, a] / (orbea[i] - orbea[a]) # This should actually be a pseudoinverse... ba = solve(X, c) # Betas dV_ao = J - Kb - Vfa dV = matrixmultiply(orbsb, matrixmultiply(dV_ao, transpose(orbsb))) X = zeros((nbf, nbf), 'd') c = zeros(nbf, 'd') for k in xrange(nbf): Gk = matrixmultiply(orbsb, matrixmultiply(Gij[k], transpose(orbsb))) for i in xrange(nbeta): for a in xrange(nbeta, norb): c[k] += dV[i, a] * Gk[i, a] / (orbeb[i] - orbeb[a]) for l in xrange(nbf): Gl = matrixmultiply(orbsb, matrixmultiply(Gij[l], transpose(orbsb))) for i in xrange(nbeta): for a in xrange(nbeta, norb): X[k, l] += Gk[i, a] * Gl[i, a] / (orbeb[i] - orbeb[a]) # This should actually be a pseudoinverse... bb = solve(X, c) logger.info("Final OEP energy = %f" % energy) return energy, (orbea, orbeb), (orbsa, orbsb)