def test_ambient_relative_humidity(backend_class): # arrange n_sd = 1 builder = Builder(n_sd, backend=backend_class()) env = Parcel(dt=np.nan, mixed_phase=True, mass_of_dry_air=np.nan, p0=1000 * si.hPa, q0=1 * si.g / si.kg, T0=260 * si.K, w=np.nan) builder.set_environment(env) attributes = {'n': np.ones(n_sd), 'volume': np.ones(n_sd)} particulator = builder.build( attributes=attributes, products=( products.AmbientRelativeHumidity(name='RHw', var='RH'), products.AmbientRelativeHumidity(name='RHi', var='RH', ice=True), )) # act values = {} for name, product in particulator.products.items(): values[name] = product.get()[0] # assert assert values['RHw'] < values['RHi']
def __init__(self, settings, backend=CPU): t_half = settings.z_half / settings.w_avg dt_output = (2 * t_half) / settings.n_output self.n_substeps = 1 while dt_output / self.n_substeps >= settings.dt_max: # TODO #334 dt_max self.n_substeps += 1 builder = Builder(backend=backend(formulae=settings.formulae), n_sd=1) builder.set_environment( Parcel( dt=dt_output / self.n_substeps, mass_of_dry_air=settings.mass_of_dry_air, p0=settings.p0, q0=settings.q0, T0=settings.T0, w=settings.w, )) builder.add_dynamic(AmbientThermodynamics()) builder.add_dynamic( Condensation( rtol_x=settings.rtol_x, rtol_thd=settings.rtol_thd, dt_cond_range=settings.dt_cond_range, )) attributes = {} r_dry = np.array([settings.r_dry]) attributes["dry volume"] = settings.formulae.trivia.volume( radius=r_dry) attributes["kappa times dry volume"] = attributes[ "dry volume"] * settings.kappa attributes["n"] = np.array([settings.n_in_dv], dtype=np.int64) environment = builder.particulator.environment r_wet = equilibrate_wet_radii( r_dry=r_dry, environment=environment, kappa_times_dry_volume=attributes["kappa times dry volume"], ) attributes["volume"] = settings.formulae.trivia.volume(radius=r_wet) products = [ PySDM_products.MeanRadius(name="radius_m1", unit="um"), PySDM_products.CondensationTimestepMin(name="dt_cond_min"), PySDM_products.ParcelDisplacement(name="z"), PySDM_products.AmbientRelativeHumidity(name="RH", unit="%"), PySDM_products.Time(name="t"), PySDM_products.ActivatingRate(unit="s^-1 mg^-1", name="activating_rate"), PySDM_products.DeactivatingRate(unit="s^-1 mg^-1", name="deactivating_rate"), PySDM_products.RipeningRate(unit="s^-1 mg^-1", name="ripening_rate"), PySDM_products.PeakSupersaturation(unit="%", name="S_max"), ] self.particulator = builder.build(attributes, products) self.n_output = settings.n_output
def __init__(self, settings, products=None): env = Parcel( dt=settings.dt, mass_of_dry_air=settings.mass_of_dry_air, p0=settings.p0, q0=settings.q0, T0=settings.T0, w=settings.w, ) n_sd = settings.n_sd_per_mode * len(settings.aerosol.modes) builder = Builder(n_sd=n_sd, backend=CPU(formulae=settings.formulae)) builder.set_environment(env) attributes = { "dry volume": np.empty(0), "dry volume organic": np.empty(0), "kappa times dry volume": np.empty(0), "n": np.ndarray(0), } for mode in settings.aerosol.modes: r_dry, n_in_dv = settings.spectral_sampling( spectrum=mode["spectrum"]).sample(settings.n_sd_per_mode) V = settings.mass_of_dry_air / settings.rho0 N = n_in_dv * V v_dry = settings.formulae.trivia.volume(radius=r_dry) attributes["n"] = np.append(attributes["n"], N) attributes["dry volume"] = np.append(attributes["dry volume"], v_dry) attributes["dry volume organic"] = np.append( attributes["dry volume organic"], mode["f_org"] * v_dry) attributes["kappa times dry volume"] = np.append( attributes["kappa times dry volume"], v_dry * mode["kappa"][settings.model], ) for attribute in attributes.values(): assert attribute.shape[0] == n_sd np.testing.assert_approx_equal( np.sum(attributes["n"]) / V, Sum( tuple( settings.aerosol.modes[i]["spectrum"] for i in range(len(settings.aerosol.modes)))).norm_factor, significant=5, ) r_wet = equilibrate_wet_radii( r_dry=settings.formulae.trivia.radius( volume=attributes["dry volume"]), environment=env, kappa_times_dry_volume=attributes["kappa times dry volume"], f_org=attributes["dry volume organic"] / attributes["dry volume"], ) attributes["volume"] = settings.formulae.trivia.volume(radius=r_wet) if settings.model == "Constant": del attributes["dry volume organic"] builder.add_dynamic(AmbientThermodynamics()) builder.add_dynamic(Condensation()) products = products or ( PySDM_products.ParcelDisplacement(name="z"), PySDM_products.Time(name="t"), PySDM_products.PeakSupersaturation(unit="%", name="S_max"), PySDM_products.AmbientRelativeHumidity(unit="%", name="RH"), PySDM_products.ParticleConcentration( name="n_c_cm3", unit="cm^-3", radius_range=settings.cloud_radius_range), PySDM_products.ParticleSizeSpectrumPerVolume( radius_bins_edges=settings.wet_radius_bins_edges), PySDM_products.ActivableFraction(), ) particulator = builder.build(attributes=attributes, products=products) if settings.BDF: bdf.patch_particulator(particulator) self.settings = settings super().__init__(particulator=particulator)
def make_default_product_collection(settings): cloud_range = (settings.aerosol_radius_threshold, settings.drizzle_radius_threshold) products = [ # Note: consider better radius_bins_edges PySDM_products.ParticleSizeSpectrumPerMass( name="Particles Wet Size Spectrum", unit="mg^-1 um^-1", radius_bins_edges=settings.r_bins_edges, ), PySDM_products.ParticleSizeSpectrumPerMass( name="Particles Dry Size Spectrum", unit="mg^-1 um^-1", radius_bins_edges=settings.r_bins_edges, dry=True, ), PySDM_products.TotalParticleConcentration(), PySDM_products.TotalParticleSpecificConcentration(), PySDM_products.ParticleConcentration( radius_range=(0, settings.aerosol_radius_threshold) ), PySDM_products.ParticleConcentration( name="n_c_cm3", unit="cm^-3", radius_range=cloud_range ), PySDM_products.WaterMixingRatio(name="qc", radius_range=cloud_range), PySDM_products.WaterMixingRatio( name="qr", radius_range=(settings.drizzle_radius_threshold, np.inf) ), PySDM_products.ParticleConcentration( name="drizzle concentration", radius_range=(settings.drizzle_radius_threshold, np.inf), unit="cm^-3", ), PySDM_products.ParticleSpecificConcentration( name="aerosol specific concentration", radius_range=(0, settings.aerosol_radius_threshold), unit="mg^-1", ), PySDM_products.MeanRadius(unit="um"), PySDM_products.SuperDropletCountPerGridbox(), PySDM_products.AmbientRelativeHumidity(name="RH_env", var="RH"), PySDM_products.AmbientPressure(name="p_env", var="p"), PySDM_products.AmbientTemperature(name="T_env", var="T"), PySDM_products.AmbientWaterVapourMixingRatio(name="qv_env", var="qv"), PySDM_products.AmbientDryAirDensity(name="rhod_env", var="rhod"), PySDM_products.AmbientDryAirPotentialTemperature(name="thd_env", var="thd"), PySDM_products.CPUTime(), PySDM_products.WallTime(), PySDM_products.EffectiveRadius(unit="um", radius_range=cloud_range), PySDM_products.RadiusBinnedNumberAveragedTerminalVelocity( radius_bin_edges=settings.terminal_velocity_radius_bin_edges ), ] if settings.processes["fluid advection"]: products.append(PySDM_products.MaxCourantNumber()) products.append(PySDM_products.CoolingRate()) if settings.processes["condensation"]: products.append(PySDM_products.CondensationTimestepMin(name="dt_cond_min")) products.append(PySDM_products.CondensationTimestepMax(name="dt_cond_max")) products.append(PySDM_products.PeakSupersaturation(unit="%", name="S_max")) products.append(PySDM_products.ActivatingRate()) products.append(PySDM_products.DeactivatingRate()) products.append(PySDM_products.RipeningRate()) if settings.processes["particle advection"]: products.append( PySDM_products.SurfacePrecipitation(name="surf_precip", unit="mm/day") ) if settings.processes["coalescence"]: products.append(PySDM_products.CollisionTimestepMean(name="dt_coal_avg")) products.append(PySDM_products.CollisionTimestepMin(name="dt_coal_min")) products.append(PySDM_products.CollisionRatePerGridbox()) products.append(PySDM_products.CollisionRateDeficitPerGridbox()) if settings.processes["freezing"]: products.append(PySDM_products.IceWaterContent()) if settings.freezing_singular: products.append( PySDM_products.FreezableSpecificConcentration(settings.T_bins_edges) ) else: products.append(PySDM_products.TotalUnfrozenImmersedSurfaceArea()) # TODO #599 immersed surf spec products.append( PySDM_products.ParticleSpecificConcentration( radius_range=(-np.inf, 0), name="n_ice" ) ) return products
def __init__(self, settings, products=None): env = Parcel( dt=settings.dt, mass_of_dry_air=settings.mass_of_dry_air, p0=settings.p0, q0=settings.q0, T0=settings.T0, w=settings.w, ) builder = Builder(n_sd=settings.n_sd, backend=CPU(formulae=settings.formulae)) builder.set_environment(env) attributes = env.init_attributes(n_in_dv=settings.n_in_dv, kappa=settings.kappa, r_dry=settings.r_dry) attributes = { **attributes, **settings.starting_amounts, "pH": np.zeros(settings.n_sd), } builder.add_dynamic(AmbientThermodynamics()) builder.add_dynamic(Condensation()) builder.add_dynamic( AqueousChemistry( environment_mole_fractions=settings.ENVIRONMENT_MOLE_FRACTIONS, system_type=settings.system_type, n_substep=settings.n_substep, dry_rho=settings.DRY_RHO, dry_molar_mass=settings.dry_molar_mass, )) products = products or ( PySDM_products.AmbientRelativeHumidity(name="RH", unit="%"), PySDM_products.WaterMixingRatio( name="ql", radius_range=[1 * si.um, np.inf], unit="g/kg"), PySDM_products.ParcelDisplacement(name="z"), PySDM_products.AmbientPressure(name="p"), PySDM_products.AmbientTemperature(name="T"), PySDM_products.AmbientDryAirDensity(name="rhod"), PySDM_products.AmbientWaterVapourMixingRatio(name="qv", unit="g/kg"), PySDM_products.Time(name="t"), *(PySDM_products.AqueousMoleFraction( comp, unit="ppb", name=f"aq_{comp}_ppb") for comp in AQUEOUS_COMPOUNDS), *(PySDM_products.GaseousMoleFraction( comp, unit="ppb", name=f"gas_{comp}_ppb") for comp in GASEOUS_COMPOUNDS), PySDM_products.Acidity( name="pH_pH_number_weighted", radius_range=settings.cloud_radius_range, weighting="number", attr="pH", ), PySDM_products.Acidity( name="pH_pH_volume_weighted", radius_range=settings.cloud_radius_range, weighting="volume", attr="pH", ), PySDM_products.Acidity( name="pH_conc_H_number_weighted", radius_range=settings.cloud_radius_range, weighting="number", attr="conc_H", ), PySDM_products.Acidity( name="pH_conc_H_volume_weighted", radius_range=settings.cloud_radius_range, weighting="volume", attr="conc_H", ), PySDM_products.TotalDryMassMixingRatio( settings.DRY_RHO, name="q_dry", unit="ug/kg"), PySDM_products.PeakSupersaturation(unit="%", name="S_max"), PySDM_products.ParticleSpecificConcentration( radius_range=settings.cloud_radius_range, name="n_c_mg", unit="mg^-1"), PySDM_products.AqueousMassSpectrum( key="S_VI", dry_radius_bins_edges=settings.dry_radius_bins_edges, name="dm_S_VI/dlog_10(dry diameter)", unit='ug / m^3"', ), ) particulator = builder.build(attributes=attributes, products=products) self.settings = settings super().__init__(particulator=particulator)
def run_parcel( w, sol2, N2, rad2, n_sd_per_mode, RH0=1.0, T0=294 * si.K, p0=1e5 * si.Pa, n_steps=50, mass_of_dry_air=1e3 * si.kg, dt=2 * si.s, ): products = ( PySDM_products.WaterMixingRatio(unit="g/kg", name="ql"), PySDM_products.PeakSupersaturation(name="S max"), PySDM_products.AmbientRelativeHumidity(name="RH"), PySDM_products.ParcelDisplacement(name="z"), ) formulae = Formulae() const = formulae.constants pv0 = RH0 * formulae.saturation_vapour_pressure.pvs_Celsius(T0 - const.T0) q0 = const.eps * pv0 / (p0 - pv0) env = Parcel(dt=dt, mass_of_dry_air=mass_of_dry_air, p0=p0, q0=q0, w=w, T0=T0) aerosol = AerosolARG(M2_sol=sol2, M2_N=N2, M2_rad=rad2) n_sd = n_sd_per_mode * len(aerosol.modes) builder = Builder(backend=CPU(), n_sd=n_sd) builder.set_environment(env) builder.add_dynamic(AmbientThermodynamics()) builder.add_dynamic(Condensation()) builder.add_dynamic(Magick()) attributes = { k: np.empty(0) for k in ("dry volume", "kappa times dry volume", "n") } for i, mode in enumerate(aerosol.modes): kappa, spectrum = mode["kappa"]["CompressedFilmOvadnevaite"], mode[ "spectrum"] r_dry, concentration = ConstantMultiplicity(spectrum).sample( n_sd_per_mode) v_dry = builder.formulae.trivia.volume(radius=r_dry) specific_concentration = concentration / builder.formulae.constants.rho_STP attributes["n"] = np.append( attributes["n"], specific_concentration * env.mass_of_dry_air) attributes["dry volume"] = np.append(attributes["dry volume"], v_dry) attributes["kappa times dry volume"] = np.append( attributes["kappa times dry volume"], v_dry * kappa) r_wet = equilibrate_wet_radii( r_dry=builder.formulae.trivia.radius(volume=attributes["dry volume"]), environment=env, kappa_times_dry_volume=attributes["kappa times dry volume"], ) attributes["volume"] = builder.formulae.trivia.volume(radius=r_wet) particulator = builder.build(attributes, products=products) bdf.patch_particulator(particulator) output = {product.name: [] for product in particulator.products.values()} output_attributes = { "n": tuple([] for _ in range(particulator.n_sd)), "volume": tuple([] for _ in range(particulator.n_sd)), "critical volume": tuple([] for _ in range(particulator.n_sd)), "critical supersaturation": tuple([] for _ in range(particulator.n_sd)), } for _ in range(n_steps): particulator.run(steps=1) for product in particulator.products.values(): value = product.get() output[product.name].append(value[0]) for key, attr in output_attributes.items(): attr_data = particulator.attributes[key].to_ndarray() for drop_id in range(particulator.n_sd): attr[drop_id].append(attr_data[drop_id]) error = np.zeros(len(aerosol.modes)) activated_fraction_S = np.zeros(len(aerosol.modes)) activated_fraction_V = np.zeros(len(aerosol.modes)) for j, mode in enumerate(aerosol.modes): activated_drops_j_S = 0 activated_drops_j_V = 0 RHmax = np.nanmax(np.asarray(output["RH"])) for i, volume in enumerate(output_attributes["volume"]): if j * n_sd_per_mode <= i < (j + 1) * n_sd_per_mode: if output_attributes["critical supersaturation"][i][-1] < RHmax: activated_drops_j_S += output_attributes["n"][i][-1] if output_attributes["critical volume"][i][-1] < volume[-1]: activated_drops_j_V += output_attributes["n"][i][-1] Nj = np.asarray(output_attributes["n"])[j * n_sd_per_mode:(j + 1) * n_sd_per_mode, -1] max_multiplicity_j = np.max(Nj) sum_multiplicity_j = np.sum(Nj) error[j] = max_multiplicity_j / sum_multiplicity_j activated_fraction_S[j] = activated_drops_j_S / sum_multiplicity_j activated_fraction_V[j] = activated_drops_j_V / sum_multiplicity_j Output = namedtuple( "Output", [ "profile", "attributes", "aerosol", "activated_fraction_S", "activated_fraction_V", "error", ], ) return Output( profile=output, attributes=output_attributes, aerosol=aerosol, activated_fraction_S=activated_fraction_S, activated_fraction_V=activated_fraction_V, error=error, )
def __init__(self, settings, backend=CPU): self.nt = settings.nt self.z0 = -settings.particle_reservoir_depth builder = Builder(n_sd=settings.n_sd, backend=backend(formulae=settings.formulae)) mesh = Mesh( grid=(settings.nz, ), size=(settings.z_max + settings.particle_reservoir_depth, ), ) env = Kinematic1D( dt=settings.dt, mesh=mesh, thd_of_z=settings.thd, rhod_of_z=settings.rhod, z0=-settings.particle_reservoir_depth, ) def zZ_to_z_above_reservoir(zZ): z_above_reservoir = zZ * (settings.nz * settings.dz) + self.z0 return z_above_reservoir self.mpdata = MPDATA_1D( nz=settings.nz, dt=settings.dt, mpdata_settings=settings.mpdata_settings, advector_of_t=lambda t: settings.rho_times_w(t) * settings.dt / settings.dz, advectee_of_zZ_at_t0=lambda zZ: settings.qv( zZ_to_z_above_reservoir(zZ)), g_factor_of_zZ=lambda zZ: settings.rhod(zZ_to_z_above_reservoir(zZ) ), ) _extra_nz = settings.particle_reservoir_depth // settings.dz _z_vec = settings.dz * np.linspace(-_extra_nz, settings.nz - _extra_nz, settings.nz + 1) self.g_factor_vec = settings.rhod(_z_vec) builder.set_environment(env) builder.add_dynamic(AmbientThermodynamics()) builder.add_dynamic( Condensation( adaptive=settings.condensation_adaptive, rtol_thd=settings.condensation_rtol_thd, rtol_x=settings.condensation_rtol_x, )) builder.add_dynamic(EulerianAdvection(self.mpdata)) if settings.precip: if settings.breakup: builder.add_dynamic( Collision( collision_kernel=Geometric(collection_efficiency=1), coalescence_efficiency=ConstEc(Ec=0.95), breakup_efficiency=ConstEb(Eb=1.0), fragmentation_function=ExponFrag(scale=100 * si.um), adaptive=settings.coalescence_adaptive, )) else: builder.add_dynamic( Coalescence( collision_kernel=Geometric(collection_efficiency=1), adaptive=settings.coalescence_adaptive, )) displacement = Displacement( enable_sedimentation=settings.precip, precipitation_counting_level_index=int( settings.particle_reservoir_depth / settings.dz), ) builder.add_dynamic(displacement) attributes = env.init_attributes( spatial_discretisation=spatial_sampling.Pseudorandom(), spectral_discretisation=spectral_sampling.ConstantMultiplicity( spectrum=settings.wet_radius_spectrum_per_mass_of_dry_air), kappa=settings.kappa, ) products = [ PySDM_products.AmbientRelativeHumidity(name="RH", unit="%"), PySDM_products.AmbientPressure(name="p"), PySDM_products.AmbientTemperature(name="T"), PySDM_products.AmbientWaterVapourMixingRatio(name="qv"), PySDM_products.WaterMixingRatio( name="ql", unit="g/kg", radius_range=settings.cloud_water_radius_range), PySDM_products.WaterMixingRatio( name="qr", unit="g/kg", radius_range=settings.rain_water_radius_range), PySDM_products.AmbientDryAirDensity(name="rhod"), PySDM_products.AmbientDryAirPotentialTemperature(name="thd"), PySDM_products.ParticleSizeSpectrumPerVolume( name="dry spectrum", radius_bins_edges=settings.r_bins_edges, dry=True), PySDM_products.ParticleSizeSpectrumPerVolume( name="wet spectrum", radius_bins_edges=settings.r_bins_edges), PySDM_products.ParticleConcentration( name="nc", radius_range=settings.cloud_water_radius_range), PySDM_products.ParticleConcentration( name="na", radius_range=(0, settings.cloud_water_radius_range[0])), PySDM_products.MeanRadius(), PySDM_products.RipeningRate(), PySDM_products.ActivatingRate(), PySDM_products.DeactivatingRate(), PySDM_products.EffectiveRadius( radius_range=settings.cloud_water_radius_range), PySDM_products.PeakSupersaturation(unit="%"), PySDM_products.SuperDropletCountPerGridbox(), ] self.particulator = builder.build(attributes=attributes, products=products)